期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
WT-FCTGN:A wavelet-enhanced fully connected time-gated neural network for complex noisy traffic flow modeling
1
作者 廖志芳 孙轲 +3 位作者 刘文龙 余志武 刘承光 宋禹成 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期652-664,共13页
Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produce... Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced during collecting information and summarizing original data of traffic flow, cause large errors in the traffic flow forecasting results. This article suggests a solution to the above mentioned issues and proposes a fully connected time-gated neural network based on wavelet reconstruction(WT-FCTGN). To eliminate the potential noise and strengthen the potential traffic trend in the data, we adopt the methods of wavelet reconstruction and periodic data introduction to preprocess the data. The model introduces fully connected time-series blocks to model all the information including time sequence information and fluctuation information in the flow of traffic, and establishes the time gate block to comprehend the periodic characteristics of the flow of traffic and predict its flow. The performance of the WT-FCTGN model is validated on the public Pe MS data set. The experimental results show that the WT-FCTGN model has higher accuracy, and its mean absolute error(MAE), mean absolute percentage error(MAPE) and root mean square error(RMSE) are obviously lower than those of the other algorithms. The robust experimental results prove that the WT-FCTGN model has good anti-noise ability. 展开更多
关键词 traffic flow modeling time-series wavelet reconstruction
下载PDF
Bird’s-eye view of recycled solid wastes in road engineering
2
作者 Zhuangzhuang Liu Tengteng Feng +5 位作者 Xingyi Zhu Jie Gao Kui Hu Meng Guo Fan Gu Feng Li 《Journal of Road Engineering》 2024年第2期93-150,共58页
Recent trends in road engineering have explored the potential of incorporating recycled solid wastes into infrastructures that including pavements,bridges,tunnels,and accessory structures.The utilization of solid wast... Recent trends in road engineering have explored the potential of incorporating recycled solid wastes into infrastructures that including pavements,bridges,tunnels,and accessory structures.The utilization of solid wastes is expected to offer sustainable solutions to waste recycling while enhancing the performance of roads.This review provides an extensive analysis of the recycling of three main types of solid wastes for road engineering purposes:industrial solid waste,infrastructure solid waste,and municipal life solid waste.Industrial solid wastes suitable for road engineering generally include coal gangue,fly ash,blast furnace slag,silica fume,and steel slag,etc.Infrastructure solid wastes recycled in road engineering primarily consist of construction&demolition waste,reclaimed asphalt pavements,and recycled cement concrete.Furthermore,recent exploration has extended to the utilization of municipal life solid wastes,such as incinerated bottom ash,glass waste,electronics waste,plastic waste,and rubber waste in road engineering applications.These recycled solid wastes are categorized into solid waste aggregates,solid waste cements,and solid waste fillers,each playing distinct roles in road infrastructure.Roles of solid waste acting aggregates,cements,and fillers in road infrastructures were fully investigated,including their pozzolanic properties,integration effects to virgin materials,modification or enhancement solutions,engineering performances.Utilization of these materials not only addresses the challenge of waste management but also offers environmental benefits aiming carbon neutral and contributes to sustainable infrastructure development.However,challenges such as variability in material properties,environmental impact mitigation,secondary pollution to environment by leaching,and concerns regarding long-term performance need to be further addressed.Despite these challenges,the recycled solid wastes hold immense potential in revolutionizing road construction practices and fostering environmental stewardship.This review delves into a bird’seye view of the utilization of recycled solid wastes in road engineering,highlighting advances,benefits,challenges,and future prospects. 展开更多
关键词 Road engineering Industrial solid waste Infrastructure solid waste Municipal life waste Recycled materials
下载PDF
Influence of introducing Zr,Ti,Nb and Ce elements on externally solidified crystals and mechanical properties of high-pressure die-casting Al–Si alloy
3
作者 Junjie Li Wenbo Yu +5 位作者 Zhenyu Sun Weichen Zheng Liangwei Zhang Yanling Xue Wenning Liu Shoumei Xiong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期147-153,共7页
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro... High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties. 展开更多
关键词 aluminium alloy high-pressure die-casting externally solidified crystals non-heat treatment
下载PDF
Stability analysis method of geogrid reinforced expansive soil slopes and its engineering application 被引量:29
4
作者 ZHANG Rui LONG Ming-xu +2 位作者 LAN Tian ZHENG Jian-long GEOFF Chao 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期1965-1980,共16页
The traditional stability analysis method of geogrid reinforced slopes does not consider the effect of lateral swelling,so it is not applicable to reinforced expansive soil slopes.This paper reports a new stability an... The traditional stability analysis method of geogrid reinforced slopes does not consider the effect of lateral swelling,so it is not applicable to reinforced expansive soil slopes.This paper reports a new stability analysis method for geogrid reinforced expansive soil slopes.The additional pullout force of the free zone due to the lateral swelling and the anti-pullout safety factor of each geogrid layer were obtained by ensuring the overall stability of the reinforced slope.The optimum design was carried out to treat an expansive soil cut slope in Hubei Province,China,by changing the spacing and length of geogrid reinforcement.Calculation results show that the additional pullout force caused by lateral swelling has a great influence on the anti-pullout stability of geogrids,and the local stability of the reinforced slope will be overestimated if the swelling effect of soil in the free zone is not considered. 展开更多
关键词 expansive soil lateral swelling pressure geogrid-soil interaction stability analysis engineering application
下载PDF
Boosting catalytic activities of carbon felt electrode towards redox reactions of vanadium ions by defect engineering 被引量:2
5
作者 XU Jian ZHANG Yi-qiong +8 位作者 ZHU Xiao-bo LONG Ting XU He LOU Xue-chun XU Zhi-zhao FU Hu XIANG Wei-zhe XIE Ming-ming JIA Chuan-kun 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期2956-2967,共12页
Vanadium redox flow batteries(VRFBs)are one of the most promising energy storage systems owing to their safety,efficiency,flexibility and scalability.However,the commercial viability of VRFBs is still hindered by the ... Vanadium redox flow batteries(VRFBs)are one of the most promising energy storage systems owing to their safety,efficiency,flexibility and scalability.However,the commercial viability of VRFBs is still hindered by the low electrochemical performance of the available carbon-based electrodes.Defect engineering is a powerful strategy to enhance the redox catalytic activity of carbon-based electrodes for VRFBs.In this paper,uniform carbon defects are introduced on the surfaces of carbon felt(CF)electrode by Ar plasma etching.Together with a higher specific surface area,the Ar plasma treated CF offers additional catalytic sites,allowing faster and more reversible oxidation/reduction reactions of vanadium ions.As a result,the VRFB using plasma treated electrode shows a power density of 1018.3 mW/cm^(2),an energy efficiency(EE)of 84.5%,and the EE remains stable over 1000 cycles. 展开更多
关键词 vanadium redox flow batteries carbon felt defect engineering plasma treatment
下载PDF
Shear Deformation of DLC Based on Molecular Dynamics Simulation and Machine Learning
6
作者 Chaofan Yao Huanhuan Cao +1 位作者 Zhanyuan Xu Lichun Bai 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2107-2119,共13页
Shear deformation mechanisms of diamond-like carbon(DLC)are commonly unclear since its thickness of several micrometers limits the detailed analysis of its microstructural evolution and mechanical performance,which fu... Shear deformation mechanisms of diamond-like carbon(DLC)are commonly unclear since its thickness of several micrometers limits the detailed analysis of its microstructural evolution and mechanical performance,which further influences the improvement of the friction and wear performance of DLC.This study aims to investigate this issue utilizing molecular dynamics simulation and machine learning(ML)techniques.It is indicated that the changes in the mechanical properties of DLC are mainly due to the expansion and reduction of sp3 networks,causing the stick-slip patterns in shear force.In addition,cluster analysis showed that the sp2-sp3 transitions arise in the stick stage,while the sp3-sp2 transitions occur in the slip stage.In order to analyze the mechanisms governing the bond breaking/re-formation in these transitions,the Random Forest(RF)model in ML identifies that the kinetic energies of sp3 atoms and their velocities along the loading direction have the highest influence.This is because high kinetic energies of atoms can exacerbate the instability of the bonding state and increase the probability of bond breaking/re-formation.Finally,the RF model finds that the shear force of DLC is highly correlated to its potential energy,with less correlation to its content of sp3 atoms.Since the changes in potential energy are caused by the variances in the content of sp3 atoms and localized strains,potential energy is an ideal parameter to evaluate the shear deformation of DLC.The results can enhance the understanding of the shear deformation of DLC and support the improvement of its frictional and wear performance. 展开更多
关键词 Diamond-like carbon shear deformation bond breaking/re-formation molecular dynamics machine learning
下载PDF
升力翼列车通过隧道的气动效应研究
7
作者 王田天 黄大飞 +4 位作者 王军彦 施方成 朱彦 张雷 高广军 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第3期1003-1016,共14页
升力翼列车是一种通过增加升力翼来提升气动升力的新概念列车,可等效降低自身重力,有效减少轮轨磨损。本研究基于RNG k−ε湍流模型,采用滑移网格模拟方法,研究了不同攻角升力翼列车通过隧道的气动效应,并通过动模型实验数据对数值计算... 升力翼列车是一种通过增加升力翼来提升气动升力的新概念列车,可等效降低自身重力,有效减少轮轨磨损。本研究基于RNG k−ε湍流模型,采用滑移网格模拟方法,研究了不同攻角升力翼列车通过隧道的气动效应,并通过动模型实验数据对数值计算方法的精度进行验证。研究结果表明:升力翼列车进入隧道后列车升力增大,相较于明线,隧道内平均升力增加了33.3%;在进入隧道时攻角由12.5°减小为7.5°,可以较好地减小进入隧道时的升力波动,同时也可减小列车和隧道表面的压力峰值,有利于列车平稳通过隧道。通过对比有、无升力翼的列车可发现,车体前端主要受到升力翼增加车隧阻塞比的影响,而压力上升;车体后端主要受到升力翼尾流的影响,压力降低。本研究结果可为升力翼列车平稳通过隧道提供技术支持。 展开更多
关键词 升力翼列车 升力翼攻角 列车升力 压力 隧道
下载PDF
Experimental and numerical investigations on acoustic damping of monoclinic crystalline wideband sound absorbing structures
8
作者 XIE Su-chao HE Lei +3 位作者 YAN Hong-yu ZHANG Feng-yi HE Guan-di WANG Jia-cheng 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1931-1944,共14页
In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the s... In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the shape of monoclinic crystals:uniaxial oblique structure(UOS)and biaxial oblique structure(BOS).Through finite element simulation and experimental research,the theoretical models of UOS and BOS were verified,and their sound absorption mechanisms were revealed.At the same time,the influence of multi-cavity composites on sound absorption performance was analyzed based on the theoretical model,and the influence of structural parameters on sound absorption performance was discussed.The research results show that,in the range of 100-2000 Hz,UOS has three sound absorption peaks and BOS has five sound absorption peaks.The frequency range of the half-absorption bandwidth(α>0.5)of UOS and BOS increases by 242% and 229%,respectively.Compared with traditional microperforated sound-absorbing structures,the series and parallel hybrid methods significantly increase the sound-absorbing bandwidth of the sound-absorbing structure.This research has guiding significance for noise control and has broad application prospects in the fields of transportation,construction,and mechanical design. 展开更多
关键词 monoclinic crystal microperforated plate acoustic metamaterials inclined cavity sound absorption
下载PDF
Multi-Objective Optimization of Aluminum Alloy Electric Bus Frame Connectors for Enhanced Durability
9
作者 Wenjun Zhou Mingzhi Yang +3 位作者 Qian Peng Yong Peng Kui Wang Qiang Xiao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期735-755,共21页
The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue ... The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications. 展开更多
关键词 Aluminum connectors three-point bending simulation parametric design model multi-objective collaborative optimization
下载PDF
Influences of the Fresh Air Volume on the Removal of Cough-Released Droplets in a Passenger Car of a High-Speed Train Using CFD
10
作者 Jun Xu Kai Bi +7 位作者 Yibin Lu TiantianWang Hang Zhang Zeyuan Zheng Fushan Shi Yaxin Zheng Xiaoying Li Jingping Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2727-2748,共22页
The spread and removal of pollution sources,namely,cough-released droplets in three different areas(front,middle,and rear areas)of a fully-loaded passenger car in a high-speed train under different fresh air flow volu... The spread and removal of pollution sources,namely,cough-released droplets in three different areas(front,middle,and rear areas)of a fully-loaded passenger car in a high-speed train under different fresh air flow volume were studied using computational fluid dynamics(CFD)method.In addition,the structure of indoor flow fields was also analysed.The results show that the large eddies are more stable and flow faster in the air supply under Mode 2(fresh air volume:2200m3/h)compared to Mode 1(fresh air volume:1100m3/h).By analysing the spreading process of droplets sprayed at different locations in the passenger car and with different particle sizes,the removal trends for droplets are found to be similar under the two air supply modes.However,when increasing the fresh air flow volume,the droplets in the middle and front areas of the passenger car are removed faster.When the droplets had dispersed for 60s,Mode 2 exhibited a removal rate approximately 1%–3%higher than Mode 1 for small and medium-sized droplets with diameters of 10 and 50μm.While those in the rear area,the situation is reversed,with Mode 1 slightly surpassing Mode 2 by 1%–3%.For large droplets with a diameter of 100μm,both modes achieved a removal rate of over 96%in all three regions at the 60 s.The results can provide guidance for air supply modes of passenger cars of high-speed trains,thus suppressing the spread of virus-carrying droplets and reducing the risk of viral infection among passengers. 展开更多
关键词 Cough-released pollutants CFD ventilation inside trains supply air volume
下载PDF
Numerical investigation on the aerodynamic drag reduction based on bottom deflectors and streamlined bogies of a high-speed train
11
作者 JIANG Chen LONG jn-lan +2 位作者 LI Yan-ong GAO Guang-jun FRANKLIN Eze 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3312-3328,共17页
The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In th... The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In this study,computational fluid dynamics(CFD)based on three-dimensional steady incompressible Reynolds-average Naiver-Stokes(RANS)equations and Realizable k-ε turbulence model were utilized for numerical simulations.Inspired by the concept of streamlined design and the idea of bottom flow field control,this study iteratively designed the bogies in a streamlined shape and combined them with the bottom deflectors to investigate the joint drag reduction mechanism.Three models,i.e.,single-bogie model,simplified train model,and eight-car high-speed train model,were created and their aerodynamic characteristics were analyzed.The results show that the single-bogie model with streamlined design shows a noticeable drag reduction,whose power bogie and trailer bogie experience 13.92%and 7.63%drag reduction,respectively.The range of positive pressure area on the bogie is reduced.The aerodynamic drag can be further reduced to 15.01%by installing both the streamlined bogie and the deflector on the simplified train model.When the streamlined bogies and deflectors are used on the eight-car model together,the total drag reduction rate reaches 2.90%.Therefore,the proposed aerodynamic kit for the high-speed train bottom is capable to improve the flow structure around the bogie regions,reduce the bottom flow velocity,and narrow the scope of the train’s influence on the surrounding environment,achieving the appreciable reduction of aerodynamic drag.This paper can provide a new idea for the drag reduction of high-speed trains. 展开更多
关键词 high-speed train numerical simulation drag reduction DEFLECTOR streamlined design
下载PDF
列车通过分岔隧道的气动效应研究
12
作者 方丰彦 刘堂红 +6 位作者 夏玉涛 许彬 王鑫然 霍小帅 高鸿瑞 粱高鹏 李文辉 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第3期1017-1031,共15页
长大铁路隧道受特殊地质条件影响可采用分岔隧道建造。然而,列车高速穿越这种复杂构型的隧道时所引起的空气动力学效应尚不清楚。为此,本文采用三维、可压缩、非定常的雷诺时均模型,模拟研究了高速列车从不同方向通过分岔隧道时引起的... 长大铁路隧道受特殊地质条件影响可采用分岔隧道建造。然而,列车高速穿越这种复杂构型的隧道时所引起的空气动力学效应尚不清楚。为此,本文采用三维、可压缩、非定常的雷诺时均模型,模拟研究了高速列车从不同方向通过分岔隧道时引起的气动效应。研究内容主要包括入口隧道结构为单线隧道(STE)和双线隧道(DTE)两个运行环境下的车体表面和隧道壁面的压力波动、列车气动力和周围流场特征等。研究结果表明,相比STE场景,DTE场景下车体表面和单线隧道壁面的压力峰峰值更大,并且气动阻力能耗也更大,头车的平均阻力增大19.2%。然而,STE场景下列车的侧向力波动更剧烈,其峰值相比DTE场景增加26%。本文的研究发现可为特殊铁路隧道的设计和建造提供有价值的空气动力学参考。 展开更多
关键词 高速列车 分岔隧道 瞬态压力波 气动力
下载PDF
Fault Diagnosis Method of Rolling Bearing Based on ESGMD-CC and AFSA-ELM
13
作者 Jiajie He Fuzheng Liu +3 位作者 Xiangyi Geng Xifeng Liang Faye Zhang Mingshun Jiang 《Structural Durability & Health Monitoring》 EI 2024年第1期37-54,共18页
Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods,making it challenging to ensure the fault diagnosis accuracy and relia... Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods,making it challenging to ensure the fault diagnosis accuracy and reliability.A novel approach integrating enhanced Symplectic geometry mode decomposition with cosine difference limitation and calculus operator(ESGMD-CC)and artificial fish swarm algorithm(AFSA)optimized extreme learning machine(ELM)is proposed in this paper to enhance the extraction capability of fault features and thus improve the accuracy of fault diagnosis.Firstly,SGMD decomposes the raw vibration signal into multiple Symplectic geometry components(SGCs).Secondly,the iterations are reset by the cosine difference limitation to effectively separate the redundant components from the representative components.Additionally,the calculus operator is performed to strengthen weak fault features and make them easier to extract,and the singular value decomposition(SVD)weighted by power spectrum entropy(PSE)can be utilized as the sample feature representation.Finally,AFSA iteratively optimized ELM is adopted as the optimized classifier for fault identification.The superior performance of the proposed method has been validated by various experiments. 展开更多
关键词 Symplectic geometry mode decomposition calculus operator cosine difference limitation fault diagnosis AFSAELM model
下载PDF
A systematic review of rigid-flexible composite pavement
14
作者 Zhaohui Liu Shiqing Yu +2 位作者 You Huang Li Liu Yu Pan 《Journal of Road Engineering》 2024年第2期203-223,共21页
Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote ... Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design. 展开更多
关键词 Rigid-flexible composite pavement Structural mechanical properties Compression-shear failure Integrated design of structure and material
下载PDF
Evaluation of the slipstream in different regions around a train with respect to different nose lengths:A comparison study
15
作者 WANG Lei LIU Tang-hong +3 位作者 CHEN Zheng-wei ZENG Guang-zhi HEMIDA Hassan XIA Yu-tao 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3295-3311,共17页
In this work,the flow surrounding the train was obtained using a detached eddy simulation(DES)for slipstream analysis.Two different streamlined nose lengths were investigated:a short nose(4 m)and a long nose(9 m).The ... In this work,the flow surrounding the train was obtained using a detached eddy simulation(DES)for slipstream analysis.Two different streamlined nose lengths were investigated:a short nose(4 m)and a long nose(9 m).The time-average slipstream velocity and the time-average slipstream pressure along the car bodies were compared and explained in detail.In addition to the time-averaged values,the _(max)imum velocities and the pressure peak-to-peak values around the two trains were analyzed.The result showed that the nose length affected the slipstream velocity along the entire train length at the lower and upper regions of the side of the train.However,no significant effect was recognized at the middle height of the train along its length,except in the nose region.Moreover,within the train’s side regions(y=2.0-2.5 m and z=2-4 m)and(y=2.5-3.5 m and z=0.2-0.7 m),the ratio of slipstream velocity U_(max) between the short and long nose trains was notably higher.This occurrence also manifested at the train’s upper section,specifically where y=0-2.5 m and z=4.2-5.0 m.Similarly,regarding the ratio of _(max)imum pressure peak-to-peak values Cp-p_(max),significant regions were observed at the train’s side(y=1.8-2.6 m and z=1-4 m)and above the train(y=0-2 m and z=3.9-4.8 m). 展开更多
关键词 high-speed train nose length slipstream velocity pressure change
下载PDF
Numerical and Experimental Analysis of the Aerodynamic Torque for Axle-Mounted Train Brake Discs
16
作者 Nan Liu Chen Hong +4 位作者 Xinchao Su Xing Jin Chen Jiang Yuqi Shi Bingkun Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1867-1882,共16页
As the velocity of a train increases,the corresponding air pumping power consumption of the brake discs increases proportionally.In the present experimental study,a standard axle-mounted brake disc with circumferentia... As the velocity of a train increases,the corresponding air pumping power consumption of the brake discs increases proportionally.In the present experimental study,a standard axle-mounted brake disc with circumferential pillars was analyzed using a 1:1 scale model and a test rig in a wind tunnel.In particular,three upstream velocities were selected on the basis of earlier investigations of trains operating at 160,250,and 400 km/h,respectively.Moreover,3D steady computational fluid dynamics(CFD)simulations of the flow field were conducted to compare with the wind tunnel test outcomes.The results for a 3-car train at 180 km/h demonstrated:(1)good agreement between the air resistance torques obtained from the wind tunnel tests and the related numerical results,with differences ranging from 0.95%to 5.88%;(2)discrepancies ranging from 3.2 to 3.8 N·m;(3)cooling ribs contributing more than 60%of the air resistance torque;(4)the fast rotation of brake discs causing a significantly different flow field near the bogie area,resulting in 25 times more air pumping power loss than that obtained in the stationary brake-disc case. 展开更多
关键词 Axle-mounted train brake disc aerodynamic torque wind tunnel test numerical simulation
下载PDF
Analysis of longitudinal forces of coupler devices in emergency braking process for heavy haul trains 被引量:7
17
作者 GAO Guang-jun CHEN Wei +4 位作者 ZHANG Jie DONG Hai-peng ZOU Xiang LI Jian GUAN Wei-yuan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2449-2457,共9页
To reduce the longitudinal coupler forces of heavy haul trains and improve the running safety, the velocity method and New-mark method were used for the coupler simulation and numerical integration, and a numerical mo... To reduce the longitudinal coupler forces of heavy haul trains and improve the running safety, the velocity method and New-mark method were used for the coupler simulation and numerical integration, and a numerical model on the longitudinal dynamics of heavy haul trains was established. Validation was performed against the experimental data. Using this model, the emergency braking process for a combined marshalling heavy haul train was investigated to obtain the distributions of the longitudinal compressive forces and strokes of coupler devices. Then, the influences of the initial braking velocity, the synchronization time of master and slave locomotives, the coupler stiffness and the vibrator mass on the longitudinal forces and strokes were analyzed. The results show that it should be avoided that the emergency braking starts at a low initial speed. Keeping synchronism between master locomotive and slave locomotives effectively helps to reduce the longitudinal forces. Reducing the coupler stiffness appropriately and adding rigid arm connections, the longitudinal vibration frequency can be brought down and the longitudinal forces will be decreased, which improves the running safety of heavy haul trains. All of these research results can provide a reference for the operation and development of heavy haul trains. 展开更多
关键词 heavy HAUL TRAIN COUPLER device longitudinal force EMERGENCY BRAKING COUPLER stiffness VIBRATOR mass
下载PDF
Seepage characteristics of a fractured silty mudstone under different confining pressures and temperatures 被引量:13
18
作者 FU Hong-yuan JIANG Huang-bin +3 位作者 QIU Xiang JI Yun-peng CHEN Wen ZENG Ling 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期1907-1916,共10页
To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental sy... To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental system, and the effects of different factors on coefficient of permeability were discussed. The results showed that the increasing confining pressure will gradually decrease the coefficient of permeability, and this process is divided into two stages: 1) the fast decrease stage, which corresponds to a confining pressure less than 30 kPa, and 2) the slow decrease stage, which corresponds to a confining pressure larger than 30 kPa. Unlike confining pressure, an increase in temperature will increase the coefficient of permeability. It is noted that fracture surface roughness will also affect the variation of coefficient of permeability to a certain extent. Among the three examined factors, the effect of confining pressure increases is dominant on fracture permeability coefficient. The relationship between the confining pressure and coefficient of permeability can be quantified by an exponential function. 展开更多
关键词 silty mudstone seepage characteristic confining pressure TEMPERATURE PERMEABILITY
下载PDF
Numerical investigation of influence of pantograph parameters and train length on aerodynamic drag of high-speed train 被引量:11
19
作者 SUN Zhi-kun WANG Tian-tian WU Fan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1334-1350,共17页
This study investigates the influence of different pantograph parameters and train length on the aerodynamic drag of high-speed train by the delayed detached eddy simulation(DDES) method. The train geometry considered... This study investigates the influence of different pantograph parameters and train length on the aerodynamic drag of high-speed train by the delayed detached eddy simulation(DDES) method. The train geometry considered is the high-speed train with pantographs, and the different versions have 3, 5, 8, 10, 12, 16 and 17 cars. The numerical results are verified by the wind tunnel test with 3.6% difference. The influences of the number of cars and the position, quantity and configuration of pantographs on flow field around high-speed train and wake vortices are analyzed. The aerodynamic drag of middle cars gradually decreases along the flow direction. The aerodynamic drag of pantographs decreases with its backward shift, and that of the first pantograph decreases significantly. As the number of pantographs increases, its effect on the aerodynamic drag decrease of rear cars is more significant. The engineering application equation for the aerodynamic drag of high-speed train with pantographs is proposed. For the 10-car and 17-car train, the differences of total aerodynamic drag between the equation and the simulation results are 1.2% and 0.4%, respectively. The equation generalized in this study could well guide the design phase of high-speed train. 展开更多
关键词 high-speed train PANTOGRAPH train length aerodynamic drag
下载PDF
Effect of ambient wind on pressure wave generated by high-speed train entering a tunnel 被引量:7
20
作者 ZHOU Xi-sai LIU Tang-hong +2 位作者 CHEN Zheng-wei ZOU Xiang LIU Dong-run 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1465-1475,共11页
Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressu... Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressure changes of the train surface and tunnel wall were obtained as well as the flow field around the train. Results show that when the train runs downwind, the pressure change is smaller than that generated when there is no wind. When the train runs upwind, the pressure change is larger. The pressure change is more sensitive in the upwind condition than in the downwind condition. Compared with no wind condition, when the wind velocity is 10 m/s and 30 m/s, the pressure amplitude on the train head is reduced by 2.8% and 10.5%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance is reduced by 2.4% and 13.5%, respectively. When the wind velocity is-10 m/s and-30 m/s, the pressure amplitude on the train head increases by 3.0% and 17.7%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance increases by 3.6% and 18.6%, respectively. The pressure waveform slightly changes under ambient wind due to the influence of ambient wind on the pressure wave propagation speed. 展开更多
关键词 HIGH-SPEED TRAIN AMBIENT WIND pressure wave TUNNEL
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部