期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
家用智能测量仪可以用于监测我们的健康
1
作者 Michael Fell 雷聃(译) 高晶(校) 《英国医学杂志中文版》 2019年第5期258-259,共2页
几年之内,英国和世界上许多其他国家几乎每个家庭,都可以配备一套能够提供一系列远程医疗和照护服务的设各——智能测量仪。一项小规模但不断增长的研究(在我同事和我本人最近的一篇综述中描述)强调了人们使用电器的变化,以及由此产生... 几年之内,英国和世界上许多其他国家几乎每个家庭,都可以配备一套能够提供一系列远程医疗和照护服务的设各——智能测量仪。一项小规模但不断增长的研究(在我同事和我本人最近的一篇综述中描述)强调了人们使用电器的变化,以及由此产生使用电力的多种方式,用以帮助监测健康状态。例如,如果一名痴呆患者通常在午餐时间喝一杯茶,但有一天没有(可能是因为摔倒),监测装置会向亲戚或照护者发出短信,建议他们与患者核实情况。 展开更多
关键词 监测装置 健康状态 测量仪 家用 远程医疗 照护 患者
原文传递
Reinforcement learning and A^(*)search for the unit commitment problem Patrick de Mars^(∗),Aidan O’Sullivan
2
作者 Patrick de Mars Aidan O’Sullivan 《Energy and AI》 2022年第3期172-181,共10页
Previous research has combined model-free reinforcement learning with model-based tree search methodsto solve the unit commitment problem with stochastic demand and renewables generation. This approachwas limited to s... Previous research has combined model-free reinforcement learning with model-based tree search methodsto solve the unit commitment problem with stochastic demand and renewables generation. This approachwas limited to shallow search depths and suffered from significant variability in run time across probleminstances with varying complexity. To mitigate these issues, we extend this methodology to more advancedsearch algorithms based on A^(*) search. First, we develop a problem-specific heuristic based on priority list unitcommitment methods and apply this in Guided A^(*) search, reducing run time by up to 94% with negligibleimpact on operating costs. In addition, we address the run time variability issue by employing a novel anytimealgorithm, Guided IDA^(*), replacing the fixed search depth parameter with a time budget constraint. We showthat Guided IDA^(*) mitigates the run time variability of previous guided tree search algorithms and enablesfurther operating cost reductions of up to 1%. 展开更多
关键词 Unit commitment Reinforcement learning Tree search Power systems
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部