Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indis...Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed.展开更多
We present a high-order Galerkin method in both space and time for the 1D unsteady linear advection-diffusion equation. Three Interior Penalty Discontinuous Galerkin (IPDG) schemes are detailed for the space discretiz...We present a high-order Galerkin method in both space and time for the 1D unsteady linear advection-diffusion equation. Three Interior Penalty Discontinuous Galerkin (IPDG) schemes are detailed for the space discretization, while the time integration is performed at the same order of accuracy thanks to an Arbitrary high order DERivatives (ADER) method. The orders of convergence of the three ADER-IPDG methods are carefully examined through numerical illustrations, showing that the approach is consistent, accurate, and efficient. The numerical results indicate that the symmetric version of IPDG is typically more accurate and more efficient compared to the other approaches.展开更多
The rational design of efficient bimetallic nanoparticle(NP)catalysts is challenging due to the lack of theoretical understanding of active components and insights into the mechanisms of a specific reaction.Here,we re...The rational design of efficient bimetallic nanoparticle(NP)catalysts is challenging due to the lack of theoretical understanding of active components and insights into the mechanisms of a specific reaction.Here,we report the rational design of nanoreactors comprising hollow carbon sphere-confined PtNi bimetallic NPs(PtNi@HCS)as highly efficient catalysts for hydrogen generation via ammonia borane hydrolysis in water.Using both density functional theory calculations and molecular dynamics simulations,the effects of an active PtNi combination and the critical synergistic role of a hollow carbon shell on the molecule diffusion adsorption behaviors are explored.Kinetic isotope effects and theoretical calculations allow the clarification of the mechanism,with oxidative addition of an O-H bond of water to the catalyst surface being the rate-determining step.The remarkable catalytic activity of the PtNi@HCS nanoreactor was also utilized for successful tandem catalytic hydrogenation reactions,using in situ-generated H_(2) from ammonia borane with high efficiency.The concerted design,theoretical calculations,and experimental work presented here shed light on the rational elaboration of efficient nanocatalysts and contribute to the establishment of a circular carbon economy using green hydrogen.展开更多
Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts...Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts as a barrier between the oxidizing gases and the alloy substrates, forming a diffusion zone that limits the overall reaction rate and leads to parabolic kinetics. But this was not verified in the study devoted to Inconel®625 the oxidation in CO2 that was followed by TGA, with characterizations by XRD, EDS and FIB microscopy. Contrary to what was expected and accepted in similar studies on other chromia-forming alloys, it was shown that the diffusion step that governs the overall reaction rate is not located inside the chromia layer but inside the alloy, precisely inside a zone just beneath the interface alloy/chromia, this zone being depleted in chromium. The chromia layer, therefore, plays no kinetic role and does not directly protect the underlying alloy. This result was demonstrated using a simple test that consisted in removing the chromia layer from the surface of samples partially oxidized and then to continue the thermal treatment: insofar as the kinetics continued without any change in rate, this proved that this surface layer of oxide did not protect the substrate. Based on previous work on many chromia-forming alloys, the possibility of a similar reaction mechanism is discussed. If the chromia layer is not the source of protection for a number of chromia-forming alloys, as is suspected, this might have major consequences in terms of industrial applications.展开更多
Bio-silica issued from diatom, a microalgae, is attracted increasing attention in material science thanks to its peculiar nanoarchitecture and related properties with versatile applications. The present work is a deep...Bio-silica issued from diatom, a microalgae, is attracted increasing attention in material science thanks to its peculiar nanoarchitecture and related properties with versatile applications. The present work is a deep analysis on morphological and chemical properties of bio-silica issued from fossil origin (diatomaceous earth) and living one (algal paste). An optimization in purification protocol was performed to obtain multiparous bio-silica from its raw media with keeping its original shape entirely. Multiple characterization methods as scanning electronic microscopy (SEM), infrared spectroscopy, x-ray diffraction (DRX), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), nitrogen adsorption and inverse gas chromatography (IGC), were used to check the purification protocol efficiency as well as to gather accurate information on morphology and chemical composition of diatom material obtained in large amount.展开更多
Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer...Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.展开更多
During this study, a focus is placed on the physical transformations that cassava undergoes during convective drying. The product continually changes its size, shape, and even its texture and consistency. The more moi...During this study, a focus is placed on the physical transformations that cassava undergoes during convective drying. The product continually changes its size, shape, and even its texture and consistency. The more moisture a product loses, the smaller its size. Firstly, the results show that water parameters such as mass or moisture content are reduced according to the drying principle. The dimensions length L, width l and thickness e decrease following a linear trend. The mathematical equations describing them were determined using the Excel office tool. This trend impacts surface and volume parameters, which in turn decrease almost linearly with the water content of the product. Note that the R2 coefficient is not always acceptable, confirming the complexity of the behavior of organic products.展开更多
Atopic dermatitis,a common chronic inflammatory skin disease,has an unclear etiology and may involve multiple factors such as genetic predisposition,immune abnormalities,and impaired skin barrier function.Currently,th...Atopic dermatitis,a common chronic inflammatory skin disease,has an unclear etiology and may involve multiple factors such as genetic predisposition,immune abnormalities,and impaired skin barrier function.Currently,there is no specific medication available for the complete cure of atopic dermatitis.The current treatment approaches mainly focus on symptom relief and control rather than curative treatment.Some commonly used medications for atopic dermatitis,such as topical corticosteroids and immunosuppressants,may have certain adverse reactions and side effects.This review summarizes the research progress on natural extracts in the treatment of atopic dermatitis,aiming to provide a foundation for the development of safe and side-effectfree medications.展开更多
Glabridin is the main ingredient of hydrophobic fraction in licorice extract and has been shown to have anti-melanogenesis activity in skins.However,the underlying mechanism(s)remain not completely understood.The aim ...Glabridin is the main ingredient of hydrophobic fraction in licorice extract and has been shown to have anti-melanogenesis activity in skins.However,the underlying mechanism(s)remain not completely understood.The aim of this study is thus to elucidate the possible mechanisms related to the melanogenesis suppression by glabridin in cultured B16 murine melanoma cells and in UVA radiation induced hyperpigmentation model of BALB/c mice as well.Molecular docking simulations revealed that between catalytic core residues and the compound.The treatment by glabridin significantly downregulated both transcriptional and/or protein expression of melanogenesis-related factors including melanocyte stimulating hormone receptor(MC1R),microphthalmia-associated transcription factor(MITF),tyrosinase(TYR),TYR-related protein-1(TRP-1)and TRP-2 in B16 cells.Both PKA/MITF and MAPK/MITF signaling pathways were found to be involved in the suppression of melanogenesis by glabridin in B16 cells.Also in vivo glabridin therapy significantly reduced hyperpigmentation,epidermal thickening,roughness and inflammation induced by frequent UVA exposure in mice skins,thus beneficial for skin healthcare.These data further look insights into the molecular mechanisms of melanogenesis suppression by glabridin,rationalizing the application of the natural compound for skin healthcare.展开更多
In spite of the numerous advances in the development of H_(2)and O_(2)evolutions upon water splitting,the separation of H_(2)from O_(2)still remains a severe challenge.Herein,the novel dual-functional nanocatalysts Pd...In spite of the numerous advances in the development of H_(2)and O_(2)evolutions upon water splitting,the separation of H_(2)from O_(2)still remains a severe challenge.Herein,the novel dual-functional nanocatalysts Pd/carbon nanosphere(CNS),obtained via immobilization of ultrafine Pd nanoparticles onto CNS,are developed and employed for both selective H_(2)generation from HCOOH dehydrogenation and O_(2)evolution from H_(2)O_(2)decomposition.In these reactions,the highest activities for Pd/CNS-800(i.e.,calcinated at 800℃)are 2478 h−1 and 993 min^(−1)for H_(2)and O_(2)evolution,respectively.The highly efficient and selective“on-off”switch for selective H_(2)generation from HCOOH is successfully realized by pH adjustment.This novel and highly efficient nanocatalyst Pd/CNS-800 not only provides new approaches for the promising application of HCOOH and H_(2)O_(2)as economic and safe H_(2)and O_(2)carriers,respectively,for fuel cells,but also promotes the development of“on-off”switch for on-demand H_(2)evolution.展开更多
Environmental stability is a major bottleneck of perovskite solar cells.Only a handful of studies are investigating the effect of moisture on the structural degradation of the absorber.They mostly rely on ex situ expe...Environmental stability is a major bottleneck of perovskite solar cells.Only a handful of studies are investigating the effect of moisture on the structural degradation of the absorber.They mostly rely on ex situ experiments and on completely degraded samples,which restrict the assessment on initial and final stage.By combining in situ X-ray diffraction under controlled 85%relative humidity,and live observations of the water-induced degradation using liquid-cell transmission electron microscopy,we reveal two competitive degradation paths leading on one hand to the decomposition of state-of-theart mixed cation/anion(Cs_(0.05)(MA_(0.17)FA_(0.83))_(0.95)Pb(Br_(0.17)I_(0.83))_(3)(CsMAFA)into PbI_(2) through a dissolution/recrystallization mechanism and,on the other hand,to a non-equilibrium phase segregation leading to CsPb_(2)Br_(5) and a Cesium-poor/iodide-rich Cs_(0.05)-x(MA_(0.17)FA_(0.83))_(0.95)Pb(Br_(0.17-2y)I_(0.83)+2y)_(3) perovskite.This degradation mechanism is corroborated at atomic-scale resolution through solid-state ^(1)H and ^(133)Cs NMR analysis.Exposure to moisture leads to a film containing important heterogeneities in terms of morphology,photoluminescence intensities,and lifetimes.Our results provide new insights and consensus that complex perovskite compositions,though very performant as champion devices,are comparatively metastable,a trait that limits the chances to achieve long-term stability.展开更多
Data assimilation(DA)and uncertainty quantification(UQ)are extensively used in analysing and reducing error propagation in high-dimensional spatial-temporal dynamics.Typical applications span from computational fluid ...Data assimilation(DA)and uncertainty quantification(UQ)are extensively used in analysing and reducing error propagation in high-dimensional spatial-temporal dynamics.Typical applications span from computational fluid dynamics(CFD)to geoscience and climate systems.Recently,much effort has been given in combining DA,UQ and machine learning(ML)techniques.These research efforts seek to address some critical challenges in high-dimensional dynamical systems,including but not limited to dynamical system identification,reduced order surrogate modelling,error covariance specification and model error correction.A large number of developed techniques and methodologies exhibit a broad applicability across numerous domains,resulting in the necessity for a comprehensive guide.This paper provides the first overview of state-of-the-art researches in this interdisciplinary field,covering a wide range of applications.This review is aimed at ML scientists who attempt to apply DA and UQ techniques to improve the accuracy and the interpretability of their models,but also at DA and UQ experts who intend to integrate cutting-edge ML approaches to their systems.Therefore,this article has a special focus on how ML methods can overcome the existing limits of DA and UQ,and vice versa.Some exciting perspectives of this rapidly developing research field are also discussed.Index Terms-Data assimilation(DA),deep learning,machine learning(ML),reduced-order-modelling,uncertainty quantification(UQ).展开更多
Numerous mantle xenoliths 6–12 cm in size and sub-angular to rounded in shape occur within Mio-Pliocene basanite lavas of the monogenic volcano of HosséréSédé in the Adamawa plateau.Xenoliths of s...Numerous mantle xenoliths 6–12 cm in size and sub-angular to rounded in shape occur within Mio-Pliocene basanite lavas of the monogenic volcano of HosséréSédé in the Adamawa plateau.Xenoliths of spinel lherzolite exhibit protogranular,equigranular or porphyroclastic texture.Microprobe chemical analyses show that olivine is highly magnesian(Fo_(88-90)),clinopyroxene crystals are diopside and augite(Wo_(41.6–49.6)En_(45.3–53.7)Fs_(4.2–6.2)),orthopyroxene crystals are enstatite(Wo 1.4–1.5 En_(88.6–89.0)Fs_(9.6–9.9))and spinel crystals are mainly Al-spinel associ-ated to minor Cr-spinel.Estimated temperatures and pressures through empirical formulas show that HosséréSédé noliths have equilibrated between 1085 and 1204℃and 1.08 to 1.57 GPa,corresponding to sampling depths of 36 and 52 km.Detailed petrographical and mineral chemistry of HosséréSédénoliths evidences the com-plex nature and composition of the subcontinental lithosphere under the Adamawa plateau.This may involve a probable uplift of the whole area after a limited exten-sional event,possible metasomatism through melt infiltration during shearing of the lithospheric mantle along the Pan African strike-slip fault system.展开更多
Fixed-bed operating experimental column conditions were studied to evaluate the performance of brick from Bangui Region (in Central African Republic), coated with iron oxyhydroxide (ferrihydrite) for the removal of ir...Fixed-bed operating experimental column conditions were studied to evaluate the performance of brick from Bangui Region (in Central African Republic), coated with iron oxyhydroxide (ferrihydrite) for the removal of iron(II) from aqueous solution. The prediction of theoretical breakthrough profiles using Bohart and Adams sorption model was employed to achieve characteristic parameters such as depth of exchange zone, time required for exchange zone to move vertically, moving rate for the exchange zone and adsorption capacity useful for fixed-bed column reactor was investigated under varying operating conditions. The effects of bed depth and flow rate on iron(II) adsorption were studied. Our finding revealed that the Brick from Bangui Region (in Central African Republic), coated with ferrihydrite was a very efficient media for the removal of Fe(II) ions from water. The experimental data showed that the depth and the moving rate (10.3 ± 0.6 cm) and (0.208 ± 0.006 cm/min) respectively of the exchange zone (adsorption zone) were independent of variability of the height of the adsorbent bed column, however the variations of the flow rate affect the moving rate of the exchange zone. The bed depth service time (BDST) model was used and permitted us to predict the service times of columns operated at various flow rates and bed depths and these predicted values were compared with the experimental values.展开更多
CO_(2)hydrogenation is an attractive way to store and utilize carbon dioxide generated by industrial processes,as well as to produce valuable chemicals from renewable and abundant resources.Iron catalysts are commonly...CO_(2)hydrogenation is an attractive way to store and utilize carbon dioxide generated by industrial processes,as well as to produce valuable chemicals from renewable and abundant resources.Iron catalysts are commonly used for the hydrogenation of carbon oxides to hydrocarbons.Iron-molybdenum catalysts have found numerous applications in catalysis,but have been never evaluated in the CO_(2)hydrogenation.In this work,the structural properties of iron-molybdenum catalysts without and with a promoting alkali metal(Li,Na,K,Rb,or Cs)were characterized using X-ray diffraction,hydrogen temperatureprogrammed reduction,CO_(2)temperature-programmed desorption,in-situ^(57)Fe Mossbauer spectroscopy and operando X-ray adsorption spectroscopy.Their catalytic performance was evaluated in the CO_(2)hydrogenation.During the reaction conditions,the catalysts undergo the formation of an iron(Ⅱ)molybdate structure,accompanied by a partial reduction of molybdenum and carbidization of iron.The rate of CO_(2)conversion and product selectivity strongly depend on the promoting alkali metals,and electronegativity was identified as an important factor affecting the catalytic performance.Higher CO_(2)conversion rates were observed with the promoters having higher electronegativity,while low electronegativity of alkali metals favors higher light olefin selectivity.展开更多
Study of physisorbed and chemisorbed carbon dioxide (CO<sub>2</sub>) species was carried out on the NaX zeolite modified by cationic exchanges with bivalent cations (Ca<sup>2+</sup> and Ba<s...Study of physisorbed and chemisorbed carbon dioxide (CO<sub>2</sub>) species was carried out on the NaX zeolite modified by cationic exchanges with bivalent cations (Ca<sup>2+</sup> and Ba<sup>2+</sup>) by temperature-programmed desorption of CO<sub>2</sub> (CO<sub>2</sub>-TPD). Others results were obtained by infrared to complete the study. The results of this research showed, in the physisorption region (213 - 473 K), that the cationic exchanges on NaX zeolite with bivalent cations increase slightly the interactions of CO<sub>2</sub> molecule with adsorbents and/or cationic site. Indeed, the desorption energies of physisorbed CO<sub>2</sub> obtained on the reference zeolite NaX (13.5 kJ·mol<sup>-1</sup>) are lower than that of exchanged zeolites E-CaX and E-BaX (15.77 and 15.17 kJ·mol<sup>-1</sup> respectively). In the chemisorbed CO<sub>2</sub> region (573 - 873 K), the desorption energies related to desorbed species (bidentate carbonates: CO<sub>3</sub>2-</sup>) on the exchanged zeolites E-CaX and E-BaX are about 81 kJ·mol<sup>-1</sup>, higher than the desorbed species (bicarbonates: HCO<sub>3</sub>2-</sup>) on the reference R-NaX (62 kJ·mol<sup>-1</sup>). In addition, the exchanged E-BaX zeolite develops the secondary adsorption sites corresponding to bicarbonates species with desorption energies of 35 kJ·mol<sup>-1</sup> lower to desorption energies of bicarbonates noted on the reference zeolite NaX.展开更多
文摘Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed.
文摘We present a high-order Galerkin method in both space and time for the 1D unsteady linear advection-diffusion equation. Three Interior Penalty Discontinuous Galerkin (IPDG) schemes are detailed for the space discretization, while the time integration is performed at the same order of accuracy thanks to an Arbitrary high order DERivatives (ADER) method. The orders of convergence of the three ADER-IPDG methods are carefully examined through numerical illustrations, showing that the approach is consistent, accurate, and efficient. The numerical results indicate that the symmetric version of IPDG is typically more accurate and more efficient compared to the other approaches.
基金Financial support was received from the National Key R&D Program of China (2021YFC2902505)the start-up funding by Beijing University of Technology (Changlong Wang)。
文摘The rational design of efficient bimetallic nanoparticle(NP)catalysts is challenging due to the lack of theoretical understanding of active components and insights into the mechanisms of a specific reaction.Here,we report the rational design of nanoreactors comprising hollow carbon sphere-confined PtNi bimetallic NPs(PtNi@HCS)as highly efficient catalysts for hydrogen generation via ammonia borane hydrolysis in water.Using both density functional theory calculations and molecular dynamics simulations,the effects of an active PtNi combination and the critical synergistic role of a hollow carbon shell on the molecule diffusion adsorption behaviors are explored.Kinetic isotope effects and theoretical calculations allow the clarification of the mechanism,with oxidative addition of an O-H bond of water to the catalyst surface being the rate-determining step.The remarkable catalytic activity of the PtNi@HCS nanoreactor was also utilized for successful tandem catalytic hydrogenation reactions,using in situ-generated H_(2) from ammonia borane with high efficiency.The concerted design,theoretical calculations,and experimental work presented here shed light on the rational elaboration of efficient nanocatalysts and contribute to the establishment of a circular carbon economy using green hydrogen.
文摘Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts as a barrier between the oxidizing gases and the alloy substrates, forming a diffusion zone that limits the overall reaction rate and leads to parabolic kinetics. But this was not verified in the study devoted to Inconel®625 the oxidation in CO2 that was followed by TGA, with characterizations by XRD, EDS and FIB microscopy. Contrary to what was expected and accepted in similar studies on other chromia-forming alloys, it was shown that the diffusion step that governs the overall reaction rate is not located inside the chromia layer but inside the alloy, precisely inside a zone just beneath the interface alloy/chromia, this zone being depleted in chromium. The chromia layer, therefore, plays no kinetic role and does not directly protect the underlying alloy. This result was demonstrated using a simple test that consisted in removing the chromia layer from the surface of samples partially oxidized and then to continue the thermal treatment: insofar as the kinetics continued without any change in rate, this proved that this surface layer of oxide did not protect the substrate. Based on previous work on many chromia-forming alloys, the possibility of a similar reaction mechanism is discussed. If the chromia layer is not the source of protection for a number of chromia-forming alloys, as is suspected, this might have major consequences in terms of industrial applications.
文摘Bio-silica issued from diatom, a microalgae, is attracted increasing attention in material science thanks to its peculiar nanoarchitecture and related properties with versatile applications. The present work is a deep analysis on morphological and chemical properties of bio-silica issued from fossil origin (diatomaceous earth) and living one (algal paste). An optimization in purification protocol was performed to obtain multiparous bio-silica from its raw media with keeping its original shape entirely. Multiple characterization methods as scanning electronic microscopy (SEM), infrared spectroscopy, x-ray diffraction (DRX), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), nitrogen adsorption and inverse gas chromatography (IGC), were used to check the purification protocol efficiency as well as to gather accurate information on morphology and chemical composition of diatom material obtained in large amount.
基金supported by the Shenzhen Science and Technology Program(JCYJ20230808105111022,JCYJ20220818095806013)Natural Science Foundation of Guangdong(2023A1515012267)+1 种基金the National Natural Science Foundation of China(22178223)the Royal Society/NSFC cost share program(IEC\NSFC\223372).
文摘Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.
文摘During this study, a focus is placed on the physical transformations that cassava undergoes during convective drying. The product continually changes its size, shape, and even its texture and consistency. The more moisture a product loses, the smaller its size. Firstly, the results show that water parameters such as mass or moisture content are reduced according to the drying principle. The dimensions length L, width l and thickness e decrease following a linear trend. The mathematical equations describing them were determined using the Excel office tool. This trend impacts surface and volume parameters, which in turn decrease almost linearly with the water content of the product. Note that the R2 coefficient is not always acceptable, confirming the complexity of the behavior of organic products.
文摘Atopic dermatitis,a common chronic inflammatory skin disease,has an unclear etiology and may involve multiple factors such as genetic predisposition,immune abnormalities,and impaired skin barrier function.Currently,there is no specific medication available for the complete cure of atopic dermatitis.The current treatment approaches mainly focus on symptom relief and control rather than curative treatment.Some commonly used medications for atopic dermatitis,such as topical corticosteroids and immunosuppressants,may have certain adverse reactions and side effects.This review summarizes the research progress on natural extracts in the treatment of atopic dermatitis,aiming to provide a foundation for the development of safe and side-effectfree medications.
基金supported by the Inner Mongolia Autonomous Region Science and Technology Revitalization Foundation (2021CG0029)the National Natural Science Foundation of China (22178070)
文摘Glabridin is the main ingredient of hydrophobic fraction in licorice extract and has been shown to have anti-melanogenesis activity in skins.However,the underlying mechanism(s)remain not completely understood.The aim of this study is thus to elucidate the possible mechanisms related to the melanogenesis suppression by glabridin in cultured B16 murine melanoma cells and in UVA radiation induced hyperpigmentation model of BALB/c mice as well.Molecular docking simulations revealed that between catalytic core residues and the compound.The treatment by glabridin significantly downregulated both transcriptional and/or protein expression of melanogenesis-related factors including melanocyte stimulating hormone receptor(MC1R),microphthalmia-associated transcription factor(MITF),tyrosinase(TYR),TYR-related protein-1(TRP-1)and TRP-2 in B16 cells.Both PKA/MITF and MAPK/MITF signaling pathways were found to be involved in the suppression of melanogenesis by glabridin in B16 cells.Also in vivo glabridin therapy significantly reduced hyperpigmentation,epidermal thickening,roughness and inflammation induced by frequent UVA exposure in mice skins,thus beneficial for skin healthcare.These data further look insights into the molecular mechanisms of melanogenesis suppression by glabridin,rationalizing the application of the natural compound for skin healthcare.
基金National Natural Science Foundation of China,Grant/Award Number:21805166111 Project of China,Grant/Award Number:D20015+1 种基金Ministryof Education,Hubei province,China,Grant/Award Number:T2020004Foundation of Science and Technology Bureau of Yichang City,Grant/Award Number:A21‐3‐012。
文摘In spite of the numerous advances in the development of H_(2)and O_(2)evolutions upon water splitting,the separation of H_(2)from O_(2)still remains a severe challenge.Herein,the novel dual-functional nanocatalysts Pd/carbon nanosphere(CNS),obtained via immobilization of ultrafine Pd nanoparticles onto CNS,are developed and employed for both selective H_(2)generation from HCOOH dehydrogenation and O_(2)evolution from H_(2)O_(2)decomposition.In these reactions,the highest activities for Pd/CNS-800(i.e.,calcinated at 800℃)are 2478 h−1 and 993 min^(−1)for H_(2)and O_(2)evolution,respectively.The highly efficient and selective“on-off”switch for selective H_(2)generation from HCOOH is successfully realized by pH adjustment.This novel and highly efficient nanocatalyst Pd/CNS-800 not only provides new approaches for the promising application of HCOOH and H_(2)O_(2)as economic and safe H_(2)and O_(2)carriers,respectively,for fuel cells,but also promotes the development of“on-off”switch for on-demand H_(2)evolution.
基金financial support from Region Hauts-de-France,FEDER,and Electricité de France(EDF)through PEROVSTAB programfinancial support from the IR-RMN-THC FR-3050 CNRS France for conducting solid-state NMR measurements.P.R.and G.N.M.R+1 种基金financial support from University of Lille and région Hauts-de-France.F.S“IMPRESSIVE”project which received funding from the European Union’s Horizon 2020 Research and Innovation Program under grant agreement number 826013.
文摘Environmental stability is a major bottleneck of perovskite solar cells.Only a handful of studies are investigating the effect of moisture on the structural degradation of the absorber.They mostly rely on ex situ experiments and on completely degraded samples,which restrict the assessment on initial and final stage.By combining in situ X-ray diffraction under controlled 85%relative humidity,and live observations of the water-induced degradation using liquid-cell transmission electron microscopy,we reveal two competitive degradation paths leading on one hand to the decomposition of state-of-theart mixed cation/anion(Cs_(0.05)(MA_(0.17)FA_(0.83))_(0.95)Pb(Br_(0.17)I_(0.83))_(3)(CsMAFA)into PbI_(2) through a dissolution/recrystallization mechanism and,on the other hand,to a non-equilibrium phase segregation leading to CsPb_(2)Br_(5) and a Cesium-poor/iodide-rich Cs_(0.05)-x(MA_(0.17)FA_(0.83))_(0.95)Pb(Br_(0.17-2y)I_(0.83)+2y)_(3) perovskite.This degradation mechanism is corroborated at atomic-scale resolution through solid-state ^(1)H and ^(133)Cs NMR analysis.Exposure to moisture leads to a film containing important heterogeneities in terms of morphology,photoluminescence intensities,and lifetimes.Our results provide new insights and consensus that complex perovskite compositions,though very performant as champion devices,are comparatively metastable,a trait that limits the chances to achieve long-term stability.
基金the support of the Leverhulme Centre for Wildfires,Environment and Society through the Leverhulme Trust(RC-2018-023)Sibo Cheng,César Quilodran-Casas,and Rossella Arcucci acknowledge the support of the PREMIERE project(EP/T000414/1)+5 种基金the support of EPSRC grant:PURIFY(EP/V000756/1)the Fundamental Research Funds for the Central Universitiesthe support of the SASIP project(353)funded by Schmidt Futures–a philanthropic initiative that seeks to improve societal outcomes through the development of emerging science and technologiesDFG for the Heisenberg Programm Award(JA 1077/4-1)the National Natural Science Foundation of China(61976120)the Natural Science Key Foundat ion of Jiangsu Education Department(21KJA510004)。
文摘Data assimilation(DA)and uncertainty quantification(UQ)are extensively used in analysing and reducing error propagation in high-dimensional spatial-temporal dynamics.Typical applications span from computational fluid dynamics(CFD)to geoscience and climate systems.Recently,much effort has been given in combining DA,UQ and machine learning(ML)techniques.These research efforts seek to address some critical challenges in high-dimensional dynamical systems,including but not limited to dynamical system identification,reduced order surrogate modelling,error covariance specification and model error correction.A large number of developed techniques and methodologies exhibit a broad applicability across numerous domains,resulting in the necessity for a comprehensive guide.This paper provides the first overview of state-of-the-art researches in this interdisciplinary field,covering a wide range of applications.This review is aimed at ML scientists who attempt to apply DA and UQ techniques to improve the accuracy and the interpretability of their models,but also at DA and UQ experts who intend to integrate cutting-edge ML approaches to their systems.Therefore,this article has a special focus on how ML methods can overcome the existing limits of DA and UQ,and vice versa.Some exciting perspectives of this rapidly developing research field are also discussed.Index Terms-Data assimilation(DA),deep learning,machine learning(ML),reduced-order-modelling,uncertainty quantification(UQ).
文摘Numerous mantle xenoliths 6–12 cm in size and sub-angular to rounded in shape occur within Mio-Pliocene basanite lavas of the monogenic volcano of HosséréSédé in the Adamawa plateau.Xenoliths of spinel lherzolite exhibit protogranular,equigranular or porphyroclastic texture.Microprobe chemical analyses show that olivine is highly magnesian(Fo_(88-90)),clinopyroxene crystals are diopside and augite(Wo_(41.6–49.6)En_(45.3–53.7)Fs_(4.2–6.2)),orthopyroxene crystals are enstatite(Wo 1.4–1.5 En_(88.6–89.0)Fs_(9.6–9.9))and spinel crystals are mainly Al-spinel associ-ated to minor Cr-spinel.Estimated temperatures and pressures through empirical formulas show that HosséréSédé noliths have equilibrated between 1085 and 1204℃and 1.08 to 1.57 GPa,corresponding to sampling depths of 36 and 52 km.Detailed petrographical and mineral chemistry of HosséréSédénoliths evidences the com-plex nature and composition of the subcontinental lithosphere under the Adamawa plateau.This may involve a probable uplift of the whole area after a limited exten-sional event,possible metasomatism through melt infiltration during shearing of the lithospheric mantle along the Pan African strike-slip fault system.
文摘Fixed-bed operating experimental column conditions were studied to evaluate the performance of brick from Bangui Region (in Central African Republic), coated with iron oxyhydroxide (ferrihydrite) for the removal of iron(II) from aqueous solution. The prediction of theoretical breakthrough profiles using Bohart and Adams sorption model was employed to achieve characteristic parameters such as depth of exchange zone, time required for exchange zone to move vertically, moving rate for the exchange zone and adsorption capacity useful for fixed-bed column reactor was investigated under varying operating conditions. The effects of bed depth and flow rate on iron(II) adsorption were studied. Our finding revealed that the Brick from Bangui Region (in Central African Republic), coated with ferrihydrite was a very efficient media for the removal of Fe(II) ions from water. The experimental data showed that the depth and the moving rate (10.3 ± 0.6 cm) and (0.208 ± 0.006 cm/min) respectively of the exchange zone (adsorption zone) were independent of variability of the height of the adsorbent bed column, however the variations of the flow rate affect the moving rate of the exchange zone. The bed depth service time (BDST) model was used and permitted us to predict the service times of columns operated at various flow rates and bed depths and these predicted values were compared with the experimental values.
基金financial support from European Union(Interreg FWVL V project PSYCHE)from the French National Research Agency(Multiprobe project,ANR-20-CE42-0007)。
文摘CO_(2)hydrogenation is an attractive way to store and utilize carbon dioxide generated by industrial processes,as well as to produce valuable chemicals from renewable and abundant resources.Iron catalysts are commonly used for the hydrogenation of carbon oxides to hydrocarbons.Iron-molybdenum catalysts have found numerous applications in catalysis,but have been never evaluated in the CO_(2)hydrogenation.In this work,the structural properties of iron-molybdenum catalysts without and with a promoting alkali metal(Li,Na,K,Rb,or Cs)were characterized using X-ray diffraction,hydrogen temperatureprogrammed reduction,CO_(2)temperature-programmed desorption,in-situ^(57)Fe Mossbauer spectroscopy and operando X-ray adsorption spectroscopy.Their catalytic performance was evaluated in the CO_(2)hydrogenation.During the reaction conditions,the catalysts undergo the formation of an iron(Ⅱ)molybdate structure,accompanied by a partial reduction of molybdenum and carbidization of iron.The rate of CO_(2)conversion and product selectivity strongly depend on the promoting alkali metals,and electronegativity was identified as an important factor affecting the catalytic performance.Higher CO_(2)conversion rates were observed with the promoters having higher electronegativity,while low electronegativity of alkali metals favors higher light olefin selectivity.
文摘Study of physisorbed and chemisorbed carbon dioxide (CO<sub>2</sub>) species was carried out on the NaX zeolite modified by cationic exchanges with bivalent cations (Ca<sup>2+</sup> and Ba<sup>2+</sup>) by temperature-programmed desorption of CO<sub>2</sub> (CO<sub>2</sub>-TPD). Others results were obtained by infrared to complete the study. The results of this research showed, in the physisorption region (213 - 473 K), that the cationic exchanges on NaX zeolite with bivalent cations increase slightly the interactions of CO<sub>2</sub> molecule with adsorbents and/or cationic site. Indeed, the desorption energies of physisorbed CO<sub>2</sub> obtained on the reference zeolite NaX (13.5 kJ·mol<sup>-1</sup>) are lower than that of exchanged zeolites E-CaX and E-BaX (15.77 and 15.17 kJ·mol<sup>-1</sup> respectively). In the chemisorbed CO<sub>2</sub> region (573 - 873 K), the desorption energies related to desorbed species (bidentate carbonates: CO<sub>3</sub>2-</sup>) on the exchanged zeolites E-CaX and E-BaX are about 81 kJ·mol<sup>-1</sup>, higher than the desorbed species (bicarbonates: HCO<sub>3</sub>2-</sup>) on the reference R-NaX (62 kJ·mol<sup>-1</sup>). In addition, the exchanged E-BaX zeolite develops the secondary adsorption sites corresponding to bicarbonates species with desorption energies of 35 kJ·mol<sup>-1</sup> lower to desorption energies of bicarbonates noted on the reference zeolite NaX.