The applications of geospatial technologies and positioning data embrace every sphere of modern-day science and industry. With technological advancement, the demands for highly accurate positioning services in real-ti...The applications of geospatial technologies and positioning data embrace every sphere of modern-day science and industry. With technological advancement, the demands for highly accurate positioning services in real-time led to the development of the Global Navigation Satellite System—Real-Time Network (GNSS-RTN). While there is numerous published information on the technical aspects of the GNSS-RTN technology, information on the best practices or guidelines in building, operating, and managing the GNSS-RTN networks is lacking in practice. To better understand the current practice in establishing and operating the GNSS-RTN systems, an online questionnaire survey was sent to the GNSS-RTN system owners/operators across the U.S. Additionally, a thorough review of available literature on business models and interviews with representatives of two major manufacturers/vendors of GNSS-RTN products and services were conducted. Study results revealed a great deal of inconsistency in current practices among states in the way the GNSS-RTN systems are built, operated, and managed. Aspects of the diversity in state practices involved the business models for the GNSS-RTN systems besides the technical attributes of the network and system products. The information gathered in this study is important in helping state agencies make informed decisions as they build, expand or manage their own GNSS-RTN systems.展开更多
Low-volume roads (LVRs) are an integral part of the rural transportation network providing access to remote rural areas and facilitating the movement of goods from farms to markets. These roads pose unique challenges ...Low-volume roads (LVRs) are an integral part of the rural transportation network providing access to remote rural areas and facilitating the movement of goods from farms to markets. These roads pose unique challenges for highway agencies including those related to safety management on the highway network. Specifically, traditional network screening methods using crash history can be effective in screening rural highways with higher traffic volumes and more frequent crashes. However, these traditional methods are often ineffective in screening LVR networks due to low traffic volumes and the sporadic nature of crash occurrence. Further, many of the LVRs are owned and operated by local agencies that may lack access to detailed crash, traffic and roadway data and the technical expertise within their staff. Therefore, there is a need for more efficient and practical network screening approaches to facilitate safety management programs on these roads. This study proposes one such approach which utilizes a heuristic scoring scheme in assessing the level of risk/safety for the purpose of network screening. The proposed scheme is developed based on the principles of US Highway Safety Manual (HSM) analysis procedures for rural highways and the fundamentals in safety science. The primary application of the proposed scheme is for ranking sites in network screening applications or for comparing multiple improvement alternatives at a specific site. The proposed approach does not require access to detailed databases, technical expertise, or exact information, making it an invaluable tool for small agencies and local governments (e.g. counties, townships, tribal governments, etc.).展开更多
This paper presents a current investigation into crash experience along a 15.7-mile rural corridor in southwest Montana with the aim of better understanding crash causal factors along the corridor. The study utilized ...This paper presents a current investigation into crash experience along a 15.7-mile rural corridor in southwest Montana with the aim of better understanding crash causal factors along the corridor. The study utilized ten years of crash data, geometric data, and observed freeflow speed data along the corridor. A systematic approach was used where every tenth of a mile was described in term of the crash experience, speed, alignment, and roadside features. Using bivariate and multivariate statistical anal-yses, the study investigated the crash experience along the corridor as well as some of the underlying relationships which could explain some of the crash causal factors. Results show a strong association between crash rates and horizontal curvatures even for flat curves that can be negotiated at speeds above the posted speed limit, per the highway design equations. Higher crash rates were also found to be associated with the difference between the observed free-flow speeds and the speed dictated by the curve radius or sight distance as per the design equations. Further, results strongly support the safety benefits of guardrails as evidenced by the lower crash rates and severities. The presence of fixed objects and the steepness of side slopes were also found to have an effect on crash rates and severities.展开更多
Wildlife-vehicle collisions(WVCs)with large animals are estimated to cost the USA over 8 billion USD in property damage,tens of thousands of human injuries and nearly 200 human fatalities each year.Most WVCs occur on ...Wildlife-vehicle collisions(WVCs)with large animals are estimated to cost the USA over 8 billion USD in property damage,tens of thousands of human injuries and nearly 200 human fatalities each year.Most WVCs occur on rural roads and are not collected evenly among road segments,leading to imbalanced data.There are a disproportionate number of analysis units that have zero WVC cases when investigating large geographic areas for collision risk.Analysis units with zero WVCs can reduce prediction accuracy and weaken the coefficient estimates of statistical learning models.This study demonstrates that the use of the synthetic minority over-sampling technique(SMOTE)to handle imbalanced WVC data in combination with statistical and machine-learning models improves the ability to determine seasonal WVC risk across the rural highway network in Montana,USA.An array of regularized variables describing landscape,road and traffic were used to develop negative binomial and random forest models to infer WVC rates per 100 million vehicle miles travelled.The random forest model is found to work particularly well with SMOTE-augmented data to improve the prediction accuracy of seasonal WVC risk.SMOTE-augmented data are found to improve accuracy when predicting crash risk across fine-grained grids while retaining the characteristics of the original dataset.The analyses suggest that SMOTE augmentation mitigates data imbalance that is encountered in seasonally divided WVC data.This research provides the basis for future risk-mapping models and can potentially be used to address the low rates of WVCs and other crash types along rural roads.展开更多
The present research brings new insights on the role of admixed corrosion inhibitors in the processes of cement hydration and rebar corrosion. The admixing of NaCl and the corrosion inhibitors in fresh mortar was foun...The present research brings new insights on the role of admixed corrosion inhibitors in the processes of cement hydration and rebar corrosion. The admixing of NaCl and the corrosion inhibitors in fresh mortar was found to alter the morphology and microstructure of the hardened mortar at the steel-mortar interfacial region. The admixing of the inhibitors increased the risk of carbonation of cement hydrates at the steel-mortar interfacial region, but partially displaced chloride ions. Chloride and the admixed inhibitors facilitated the formation of different cement hydrates and affected chloride binding at the steel-mortar interfacial region. The admixing of all three inhibitors was found to increase the polarization resistance of steel, indicating reduced corrosion rate of the steel over 48-day exposures to salt ponding.展开更多
Stormwater runoff at airports is a significant and costly issue, especially for the stormwater laden with deicing contaminants of high Biochemical Oxygen Demand (BOD) and aquatic toxicity. To reduce the loading of d...Stormwater runoff at airports is a significant and costly issue, especially for the stormwater laden with deicing contaminants of high Biochemical Oxygen Demand (BOD) and aquatic toxicity. To reduce the loading of deicing constituents in stormwater and to manage the increasing pressure of tightening regulations, identifying fate and transport and evaluating environmental risks of deicing stormwater are of critical importance. In this review, the regulatory development of airport deicing stormwater management was first discussed, along with the milestone Airport Cooperative Research Program (ACRP) Report 14 publication. The deicer usage and fugitive losses can be reduced and the amount of deicer collected can be increased by having a better understanding of the fate and transport of deicing constituents in stormwater. As such, an overview and evaluation of the constituents of concern in deicers were provided to support the assessment of environmental impacts and mitigation recommendations. The state of knowledge of airport deicing stormwater management was then reviewed, which needs to be synthesized into a national guidance document. A guidebook and a decision tool for airports were proposed to adopt specific practical stormwater management strategies while balancing their priorities in environmental, economic, and social values against operational constraints. These challenges pose great opportunities to improve the current practices of airport deicing stormwater management.展开更多
文摘The applications of geospatial technologies and positioning data embrace every sphere of modern-day science and industry. With technological advancement, the demands for highly accurate positioning services in real-time led to the development of the Global Navigation Satellite System—Real-Time Network (GNSS-RTN). While there is numerous published information on the technical aspects of the GNSS-RTN technology, information on the best practices or guidelines in building, operating, and managing the GNSS-RTN networks is lacking in practice. To better understand the current practice in establishing and operating the GNSS-RTN systems, an online questionnaire survey was sent to the GNSS-RTN system owners/operators across the U.S. Additionally, a thorough review of available literature on business models and interviews with representatives of two major manufacturers/vendors of GNSS-RTN products and services were conducted. Study results revealed a great deal of inconsistency in current practices among states in the way the GNSS-RTN systems are built, operated, and managed. Aspects of the diversity in state practices involved the business models for the GNSS-RTN systems besides the technical attributes of the network and system products. The information gathered in this study is important in helping state agencies make informed decisions as they build, expand or manage their own GNSS-RTN systems.
文摘Low-volume roads (LVRs) are an integral part of the rural transportation network providing access to remote rural areas and facilitating the movement of goods from farms to markets. These roads pose unique challenges for highway agencies including those related to safety management on the highway network. Specifically, traditional network screening methods using crash history can be effective in screening rural highways with higher traffic volumes and more frequent crashes. However, these traditional methods are often ineffective in screening LVR networks due to low traffic volumes and the sporadic nature of crash occurrence. Further, many of the LVRs are owned and operated by local agencies that may lack access to detailed crash, traffic and roadway data and the technical expertise within their staff. Therefore, there is a need for more efficient and practical network screening approaches to facilitate safety management programs on these roads. This study proposes one such approach which utilizes a heuristic scoring scheme in assessing the level of risk/safety for the purpose of network screening. The proposed scheme is developed based on the principles of US Highway Safety Manual (HSM) analysis procedures for rural highways and the fundamentals in safety science. The primary application of the proposed scheme is for ranking sites in network screening applications or for comparing multiple improvement alternatives at a specific site. The proposed approach does not require access to detailed databases, technical expertise, or exact information, making it an invaluable tool for small agencies and local governments (e.g. counties, townships, tribal governments, etc.).
基金the financial support to this research by the National Science Foundation (NSF) through the Western Transportation Institute (WTI) of Montana State University
文摘This paper presents a current investigation into crash experience along a 15.7-mile rural corridor in southwest Montana with the aim of better understanding crash causal factors along the corridor. The study utilized ten years of crash data, geometric data, and observed freeflow speed data along the corridor. A systematic approach was used where every tenth of a mile was described in term of the crash experience, speed, alignment, and roadside features. Using bivariate and multivariate statistical anal-yses, the study investigated the crash experience along the corridor as well as some of the underlying relationships which could explain some of the crash causal factors. Results show a strong association between crash rates and horizontal curvatures even for flat curves that can be negotiated at speeds above the posted speed limit, per the highway design equations. Higher crash rates were also found to be associated with the difference between the observed free-flow speeds and the speed dictated by the curve radius or sight distance as per the design equations. Further, results strongly support the safety benefits of guardrails as evidenced by the lower crash rates and severities. The presence of fixed objects and the steepness of side slopes were also found to have an effect on crash rates and severities.
文摘Wildlife-vehicle collisions(WVCs)with large animals are estimated to cost the USA over 8 billion USD in property damage,tens of thousands of human injuries and nearly 200 human fatalities each year.Most WVCs occur on rural roads and are not collected evenly among road segments,leading to imbalanced data.There are a disproportionate number of analysis units that have zero WVC cases when investigating large geographic areas for collision risk.Analysis units with zero WVCs can reduce prediction accuracy and weaken the coefficient estimates of statistical learning models.This study demonstrates that the use of the synthetic minority over-sampling technique(SMOTE)to handle imbalanced WVC data in combination with statistical and machine-learning models improves the ability to determine seasonal WVC risk across the rural highway network in Montana,USA.An array of regularized variables describing landscape,road and traffic were used to develop negative binomial and random forest models to infer WVC rates per 100 million vehicle miles travelled.The random forest model is found to work particularly well with SMOTE-augmented data to improve the prediction accuracy of seasonal WVC risk.SMOTE-augmented data are found to improve accuracy when predicting crash risk across fine-grained grids while retaining the characteristics of the original dataset.The analyses suggest that SMOTE augmentation mitigates data imbalance that is encountered in seasonally divided WVC data.This research provides the basis for future risk-mapping models and can potentially be used to address the low rates of WVCs and other crash types along rural roads.
基金Supported by the Research and Innovative Technology Administration under the U.S. Department of Transportation through the University Transportation Center
文摘The present research brings new insights on the role of admixed corrosion inhibitors in the processes of cement hydration and rebar corrosion. The admixing of NaCl and the corrosion inhibitors in fresh mortar was found to alter the morphology and microstructure of the hardened mortar at the steel-mortar interfacial region. The admixing of the inhibitors increased the risk of carbonation of cement hydrates at the steel-mortar interfacial region, but partially displaced chloride ions. Chloride and the admixed inhibitors facilitated the formation of different cement hydrates and affected chloride binding at the steel-mortar interfacial region. The admixing of all three inhibitors was found to increase the polarization resistance of steel, indicating reduced corrosion rate of the steel over 48-day exposures to salt ponding.
文摘Stormwater runoff at airports is a significant and costly issue, especially for the stormwater laden with deicing contaminants of high Biochemical Oxygen Demand (BOD) and aquatic toxicity. To reduce the loading of deicing constituents in stormwater and to manage the increasing pressure of tightening regulations, identifying fate and transport and evaluating environmental risks of deicing stormwater are of critical importance. In this review, the regulatory development of airport deicing stormwater management was first discussed, along with the milestone Airport Cooperative Research Program (ACRP) Report 14 publication. The deicer usage and fugitive losses can be reduced and the amount of deicer collected can be increased by having a better understanding of the fate and transport of deicing constituents in stormwater. As such, an overview and evaluation of the constituents of concern in deicers were provided to support the assessment of environmental impacts and mitigation recommendations. The state of knowledge of airport deicing stormwater management was then reviewed, which needs to be synthesized into a national guidance document. A guidebook and a decision tool for airports were proposed to adopt specific practical stormwater management strategies while balancing their priorities in environmental, economic, and social values against operational constraints. These challenges pose great opportunities to improve the current practices of airport deicing stormwater management.