期刊文献+
共找到95篇文章
< 1 2 5 >
每页显示 20 50 100
Solvent engineering towards scalable fabrication of high-quality perovskite films for efficient solar modules 被引量:4
1
作者 Zhaoyi Jiang Binkai Wang +10 位作者 Wenjun Zhang Zhichun Yang Mengjie Li Fumeng Ren Tahir Imran Zhenxing Sun Shasha Zhang Yiqiang Zhang Zhiguo Zhao Zonghao Liu Wei Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期689-710,I0015,共23页
Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,th... Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,the upscaling of small-area PSCs to large-area solar modules to meet the demands of practical applications remains a significant challenge.The scalable production of high-quality perovskite films by a simple,reproducible process is crucial for resolving this issue.Furthermore,the crystallization behavior in the solution-processed fabrication of perovskite films can be strongly influenced by the physicochemical properties of the precursor inks,which are significantly affected by the employed solvents and their interactions with the solutes.Thus,a comprehensive understanding of solvent engineering for fabricating perovskite films over large areas is urgently required.In this paper,we first analyze the role of solvents in the solution-processed fabrication of large-area perovskite films based on the classical crystal nucleation and growth mechanism.Recent efforts in solvent engineering to improve the quality of perovskite films for solar modules are discussed.Finally,the basic principles and future challenges of solvent system design for scalable fabrication of high-quality perovskite films for efficient solar modules are proposed. 展开更多
关键词 Solvent engineering Scalable fabrication Perovskite film Solar cell Module
下载PDF
The comparison of manganese spectral lines for self-absorption reduction in LIBS using laser-induced fluorescence 被引量:1
2
作者 唐云 李菁锋 +5 位作者 马世祥 胡桢麟 彭旭翔 周伟平 袁晓 沈萌 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第6期82-87,共6页
The detection of manganese(Mn)in steel by laser-induced breakdown spectroscopy(LIBS)provides essential information for steelmaking.However,self-absorption greatly disrupts the LIBS spectral lines of Mn with high conte... The detection of manganese(Mn)in steel by laser-induced breakdown spectroscopy(LIBS)provides essential information for steelmaking.However,self-absorption greatly disrupts the LIBS spectral lines of Mn with high content.In this study,to minimize self-absorption for Mn spectral lines in LIBS,laser-induced fluorescence(LIF)was applied.Compared with conventional LIBS,the self-absorption factors(α)of Mn I 403.08,403.31,and 403.45 nm lines were reduced by 90%,88%,and 88%,respectively;the root mean square errors of crossvalidation were decreased by 88%,85%,and 87%,respectively;the average relative errors were reduced by 93%,90%,and 91%,respectively;and average relative standard deviations were decreased by 29%,32%,and 33%,respectively.The LIBS-LIF was shown to successfully minimize the self-absorption effect and spectral intensity fluctuation and improve detection accuracy. 展开更多
关键词 laser-induced breakdown spectroscopy SELF-ABSORPTION LIBS-LIF
下载PDF
High-Resolution Mass Spectroscopy for Revealing the Charge Storage Mechanism in Batteries: Oxamide Materials as an Example
3
作者 Chenyang Zhang Yuan Chen +7 位作者 Kun Fan Guoqun Zhang Jincheng Zou Huichao Dai Yanbo Gao Xiaobo Wang Minglei Mao Chengliang Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期195-202,共8页
The pursuit of high-performance electrode materials is highly desired to meet the demand of batteries with high energy and power density.However,a deep understanding of the charge storage mechanism is always challengi... The pursuit of high-performance electrode materials is highly desired to meet the demand of batteries with high energy and power density.However,a deep understanding of the charge storage mechanism is always challenging,which limits the development of advanced electrode materials.Herein,high-resolution mass spectroscopy(HR-MS)is employed to detect the evolution of organic electrode materials during the redox process and reveal the charge storage mechanism,by using small molecular oxamides as an example,which have ortho-carbonyls and are therefore potential electrochemical active materials for batteries.The HR-MS results adequately proved that the oxamides could reversibly store lithium ions in the voltage window of 1.5–3.8 V.Upon deeper reduction,the oxamides would decompose due to the cleavage of the C–N bonds in oxamide structures,which could be proved by the fragments detected by HR-MS,^(1)H NMR,and the generation of NH_(3)after the reduction of oxamide by Li.This work provides a strategy to deeply understand the charge storage mechanism of organic electrode materials and will stimulate the further development of characterization techniques to reveal the charge storage mechanism for developing high-performance electrode materials. 展开更多
关键词 charge storage mechanism high-resolution mass spectroscopy organic batteries organic electrodes oxamides
下载PDF
Structural Isomers:Small Change with Big Difference in Anion Storage 被引量:1
4
作者 Huichao Dai Yuan Chen +7 位作者 Yueyue Cao Manli Fu Linnan Guan Guoqun Zhang Lei Gong Mi Tang Kun Fan Chengliang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期222-234,共13页
Organic electrode materials are promising for batteries.However,the reported organic electrodes are often facing the challenges of low specific capacity,low voltage,poor rate capability and vague charge storage mechan... Organic electrode materials are promising for batteries.However,the reported organic electrodes are often facing the challenges of low specific capacity,low voltage,poor rate capability and vague charge storage mechanisms,etc.Isomers are good platform to investigate the charge storage mechanisms and enhance the performance of batteries,which,however,have not been focused in batteries.Herein,two isomers are reported for batteries.As a result,the isomer tetrathiafulvalene(TTF)could store two monovalent anions reversibly,deriving an average discharge voltage of 1.05 V and a specific capacity of 220 mAh g−1 at a current density of 2 C.On the other hand,the other isomer tetrathianaphthalene could only reversibly store one monovalent anion and upon further oxidation,it would undergo an irreversible solid-state molecular rearrangement to TTF.The molecular rearrangement was confirmed by electrochemical performances,X-ray diffraction patterns,nuclear magnetic resonance spectra,and 1H detected heteronuclear multiple bond correlation spectra.These results suggested the small structural change could lead to a big difference in anion storage,and we hope this work will stimulate more attention to the structural design for boosting the performance of organic batteries. 展开更多
关键词 Zinc-organic batteries ISOMERS Solid-state molecular rearrangement Anion storage P-type organic electrode materials
下载PDF
Efficient PbS quantum dots tandem solar cells through compatible interconnection layer
5
作者 Gomaa Mohamed Gomaa Khalaf Xinzhao Zhao +6 位作者 Mingyu Li Chunxia Li Salman Ali Tianjun Ma Hsien-Yi Hsu Jianbin Zhang Haisheng Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期47-57,共11页
Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency ... Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency lags much behind to their single junction counterparts due to the deficient interconnection layer(ICL) and defective subcells. To improve TSCs performance, we developed three kinds of ICL structures based on 1.34 and 0.96 e V PbS QDs subcells. The control, 1,2-ethanedithiol capped PbS QDs(PbS-EDT)/Au/tin dioxide(SnO_(2))/zinc oxide(Zn O), utilized SnO_(2) layer to obtain high surface compactness.However, its energy level mismatch causes incomplete recombination. Bypassing it, the second ICL(PbS-EDT/Au/Zn O) removed SnO_(2) and boosted the power conversion efficiency(PCE) from 5.75% to 8.69%. In the third ICL(PbS-EDT/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)/Au/Zn O), a thin layer of PTAA can effectively fill fissures on the surface of PbS-EDT and also protect the front cells from solvent penetration. This TSC obtained a PCE of 9.49% with an open circuit voltage of 0.91 V, a short circuit current density of 15.47 m A/cm~2, and a fill factor of 67.7%. To the best of our knowledge, this was the highest PCE achieved by all PbS QD TSCs reported to date. These TSCs maintained stable performance for a long working time under ambient conditions. 展开更多
关键词 Quantum dots Tandem solar cell Interconnection layer HYSTERESIS DEFECT
下载PDF
Interior and Exterior Decoration of Transition Metal Oxide Through Cu^(0)/Cu^(+) Co-Doping Strategy for High-Performance Supercapacitor 被引量:5
6
作者 Weifeng Liu Zhi Zhang +4 位作者 Yanan Zhang Yifan Zheng Nishuang Liu Jun Su Yihua Gao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第4期96-109,共14页
Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance,the practical applications still suffering from inferior electrochemical activity owing to its low electrical ... Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance,the practical applications still suffering from inferior electrochemical activity owing to its low electrical conductivity,poor structural stability and inefficient nanostructure.Herein,we report a novel Cu0/Cu+co-doped CoO composite with adjustable metallic Cu0 and ion Cu+via a facile strategy.Through interior(Cu+)and exterior(Cu0)decoration of CoO,the electrochemical performance of CoO electrode has been significantly improved due to both the beneficial flower-like nanostructure and the synergetic effect of Cu0/Cu+co-doping,which results in a significantly enhanced specific capacitance(695 F g^(-1) at 1 A g^(-1))and high cyclic stability(93.4%retention over 10,000 cycles)than pristine CoO.Furthermore,this co-doping strategy is also applicable to other transition metal oxide(NiO)with enhanced electrochemical performance.In addition,an asymmetric hybrid supercapacitor was assembled using the Cu0/Cu+co-doped CoO electrode and active carbon,which delivers a remarkable maximal energy density(35 Wh kg^(-1)),exceptional power density(16 kW kg^(-1))and ultralong cycle life(91.5%retention over 10,000 cycles).Theoretical calculations further verify that the co-doping of Cu^(0)/Cu^(+)can tune the electronic structure of CoO and improve the conductivity and electron transport.This study demonstrates a facile and favorable strategy to enhance the electrochemical performance of transition metal oxide electrode materials. 展开更多
关键词 Cu^(0)/Cu^(+)co-doping HETEROSTRUCTURE Transition metal oxide SUPERCAPACITOR
下载PDF
Enhanced ion conductivity and electrode–electrolyte interphase stability of porous Si anodes enabled by silicon nitride nanocoating for high-performance Li-ion batteries 被引量:4
7
作者 Shixiong Mei Siguang Guo +7 位作者 Ben Xiang Jiaguo Deng Jijiang Fu Xuming Zhang Yang Zheng Biao Gao Paul K Chu Kaifu Huo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期616-625,I0017,共11页
Silicon (Si) is a promising anode material for next-generation high-energy lithium-ion batteries (LIBs) due to its high capacity.However,the large volumetric expansion,poor ion conductivity and unstable solid electrol... Silicon (Si) is a promising anode material for next-generation high-energy lithium-ion batteries (LIBs) due to its high capacity.However,the large volumetric expansion,poor ion conductivity and unstable solid electrolyte interface (SEI) lead to rapid capacity fading and low rate performance.Herein,we report Si nitride (SiN) comprising stoichiometric Si_(3)N_(4) and Li-active anazotic SiN_(x) coated porous Si (p-Si@SiN)for high-performance anodes in LIBs.The ant-nest-like porous Si consisting of 3D interconnected Si nanoligaments and bicontinuous nanopores prevents pulverization and accommodates volume expansion during cycling.The Si_(3)N_(4) offers mechanically protective coating to endow highly structural integrity and inhibit superfluous formation of SEI.The fast ion conducting Li_(3)N generated in situ from lithiation of active SiN_(x) facilitates Li ion transport.Consequently,the p-Si@SiN anode has appealing electrochemical properties such as a high capacity of 2180 mAh g^(-1)at 0.5 A g^(-1) with 84%capacity retention after 200cycles and excellent rate capacity with discharge capacity of 721 mAh g^(-1) after 500 cycles at 5.0 A g^(-1).This work provides insights into the rational design of active/inactive nanocoating on Si-based anode materials for fast-charging and highly stable LIBs. 展开更多
关键词 Silicon anode Ion conductivity Si_(3)N_(4) SiN_(x) Lithium-ion battery
下载PDF
High-Performance Solid-State Supercapacitors Fabricated by Pencil Drawing and Polypyrrole Depositing on Paper Substrate 被引量:4
8
作者 Jiayou Tao Wenzhen Ma +4 位作者 Nishuang Liu Xiaoliang Ren Yuling Shi Jun Su Yihua Gao 《Nano-Micro Letters》 SCIE EI CAS 2015年第3期276-281,共6页
A solid-state powerful supercapacitor(SC) is fabricated with a substrate of Xerox paper. Its current collector based on a foldable electronic circuit is developed by simply pencil drawing. Thin graphite sheets on pape... A solid-state powerful supercapacitor(SC) is fabricated with a substrate of Xerox paper. Its current collector based on a foldable electronic circuit is developed by simply pencil drawing. Thin graphite sheets on paper provide effective channels for electron transmission with a low resistance of 95 X sq-1. The conductive organic material of polypyrrole coated on thin graphite sheets acts as the electrode material of the device. The as-fabricated SC exhibits a high specific capacitance of 52.9 F cm-3at a scan rate of 1 m V s-1. An energy storage unit fabricated by three full-charged series SCs can drive a commercial light-emitting diode robustly. This work demonstrated a simple, versatile and costeffective method for paper-based devices. 展开更多
关键词 SUPERCAPACITOR PAPER Pencil drawing POLYPYRROLE
下载PDF
Recent progress in organic electrodes for zinc-ion batteries 被引量:3
9
作者 Shuaifei Xu Mingxuan Sun +1 位作者 Qian Wang Chengliang Wang 《Journal of Semiconductors》 EI CAS CSCD 2020年第9期38-58,共21页
Organic zinc-ion batteries(OZIBs)are emerging rechargeable energy storage devices and have attracted increasing attention as one of the promising alternatives of lithium-ion batteries,benefiting from the Zn metal(low ... Organic zinc-ion batteries(OZIBs)are emerging rechargeable energy storage devices and have attracted increasing attention as one of the promising alternatives of lithium-ion batteries,benefiting from the Zn metal(low cost,safety and small ionic size)and organic electrodes(flexibility,green and designable molecular structure).Organic electrodes have exhibited fine electrochemical performance in ZIBs,but the research is still in infancy and hampered by some issues.Hence,to provide insight into OZIBs,this review summarizes the progress of organic cathode materials for ZIBs and points out the existing challenges and then addresses potential solutions.It is hoped that this review can stimulate the researchers to further develop high-performance OZIBs. 展开更多
关键词 organic electrodes zinc-ion batteries redox compounds
下载PDF
Self-Assembled Al Nanostructure/ZnO Quantum Dot Heterostructures for High Responsivity and Fast UV Photodetector 被引量:3
10
作者 Sisi Liu Ming‑Yu Li +4 位作者 Jianbing Zhang Dong Su Zhen Huang Sundar Kunwar Jihoon Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期96-108,共13页
Light confinement induced by spontaneous near-surface resonance is inherently determined by the location and geometry of metallic nanostructures(NSs),offering a facile and effective approach to break through the limit... Light confinement induced by spontaneous near-surface resonance is inherently determined by the location and geometry of metallic nanostructures(NSs),offering a facile and effective approach to break through the limitation of the light-mater interaction within the photoactive layers.Here,we demonstrate high-performance Al NS/ZnO quantum dots(Al/ZnO) heterostructure UV photodetectors with controllable morphologies of the self-assembled Al NSs.The Al/ZnO heterostructures exhibit a superior light utilization than the ZnO/Al heterostructures,and a strong morphological dependence of the Al NSs on the optical properties of the heterostructures.The inter-diffusion of Al atoms into ZnO matrixes is of a great benefit for the carrier transportation.Consequently,the optimal photocurrent of the Al/ZnO heterostructure photodetectors is significantly increased by 275 times to ~1.065 mA compared to that of the pristine ZnO device,and an outstanding photoresponsivity of 11.98 A W-1 is correspondingly achieved under 6.9 MW cm-2 UV light illumination at 10 V bias.In addition,a relatively fast response is similarly witnessed with the Al/ZnO devices,paving a path to fabricate the high-performance UV photodetectors for applications. 展开更多
关键词 Al/ZnO heterostructure photodetectors Plasmonic enhancement ZnO quantum dots Self-assembled Al nanostructures
下载PDF
Weak Intermolecular Interactions for Strengthening Organic Batteries 被引量:3
11
作者 Chengliang Wang 《Energy & Environmental Materials》 SCIE 2020年第4期441-452,共12页
Organic batteries have attracted a lot of attention due to the advantages of flexibility,light weight,vast resources,low cost,recyclability,and ease to be functionalized through molecular design.The biggest difference... Organic batteries have attracted a lot of attention due to the advantages of flexibility,light weight,vast resources,low cost,recyclability,and ease to be functionalized through molecular design.The biggest difference between organic materials and inorganic materials is the relatively weak intermolecular interactions in organic materials but strong covalent or ionic bonds in inorganic materials,which is the inherent reason of their different physiochemical and electrochemical characteristics.Therefore,the relatively weak intermolecular interactions can indisputably affect the electrochemical performance of organic batteries significantly.Herein,the intermolecular interactions that are closely related to organic redox-active materials and unique in organic batteries are summarized into three parts:1)between neighbor active molecules,2)between active molecules and the conduction additives,and 3)between active molecules and the binders.We hope this short review can give a distinct viewpoint for better understanding the internal reasons of high-performance batteries and stimulate the deep studies of relatively weak intermolecular interactions for strengthening the performance of organic batteries. 展开更多
关键词 binders conductive additives intermolecular interactions organic batteries redox-active materials
下载PDF
Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel
12
作者 Qingdong ZENG Fan DENG +7 位作者 Zhiheng ZHU Yun TANG Boyun WANG Yongjun XIAO Liangbin XIONG Huaqing YU Lianbo GUO Xiangyou LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第3期46-51,共6页
In this paper, we developed a portable laser-induced breakdown spectroscopy(LIBS) using an optical fiber to deliver laser energy and used it to quantitatively analyze minor elements in steel.The R^2 factors of calibra... In this paper, we developed a portable laser-induced breakdown spectroscopy(LIBS) using an optical fiber to deliver laser energy and used it to quantitatively analyze minor elements in steel.The R^2 factors of calibration curves of elements Mn, Ti, V, and Cr in pig iron were 0.9965,0.9983, 0.9963, and 0.991, respectively, and their root mean square errors of cross-validation were 0.0501, 0.0054, 0.0205, and 0.0245 wt%, respectively. Six test samples were used for the validation of the performance of the calibration curves established by the portable LIBS. The average relative errors of elements Mn, Ti, V, and Cr were 2.5%, 11.7%, 13.0%, and 5.6%,respectively. These results were comparable with most results reported in traditional LIBS in steel or other matrices. However, the portable LIBS is flexible, compact, and robust, providing a promising prospect in industrial application. 展开更多
关键词 LASER-INDUCED BREAKDOWN spectroscopy optical fiber QUANTITATIVE ANALYSES MINOR element
下载PDF
Improving the Performance of PbS Quantum Dot Solar Cells by Optimizing ZnO Window Layer
13
作者 Xiaokun Yang Long Hu +9 位作者 Hui Deng Keke Qiao Chao Hu Zhiyong Liu Shengjie Yuan Jahangeer Khan Dengbing Li Jiang Tang Haisheng Song Chun Cheng 《Nano-Micro Letters》 SCIE EI CAS 2017年第2期156-165,共10页
Comparing with hot researches in absorber layer,window layer has attracted less attention in PbS quantum dot solar cells(QD SCs). Actually, the window layer plays a key role in exciton separation, charge drifting, and... Comparing with hot researches in absorber layer,window layer has attracted less attention in PbS quantum dot solar cells(QD SCs). Actually, the window layer plays a key role in exciton separation, charge drifting, and so on.Herein, ZnO window layer was systematically investigated for its roles in QD SCs performance. The physical mechanism of improved performance was also explored. It was found that the optimized ZnO films with appropriate thickness and doping concentration can balance the optical and electrical properties, and its energy band align well with the absorber layer for efficient charge extraction. Further characterizations demonstrated that the window layer optimization can help to reduce the surface defects, improve the heterojunction quality, as well as extend the depletion width. Compared with the control devices, the optimized devices have obtained an efficiency of 6.7% with an enhanced V_(oc) of 18%, J_(sc) of 21%, FF of 10%, and power conversion efficiency of 58%. The present work suggests a useful strategy to improve the device performance by optimizing the window layer besides the absorber layer. 展开更多
关键词 ZNO Window layer Thin film solar cells PbS quantum dots Physical mechanism
下载PDF
3D printed fiber-optic nanomechanical bioprobe 被引量:6
14
作者 Mengqiang Zou Changrui Liao +17 位作者 Yanping Chen Lei Xu Shuo Tang Gaixia Xu Ke Ma Jiangtao Zhou Zhihao Cai Bozhe Li Cong Zhao Zhourui Xu Yuanyuan Shen Shen Liu Ying Wang Zongsong Gan Hao Wang Xuming Zhang Sandor Kasas Yiping Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期222-234,共13页
Ultrasensitive nanomechanical instruments,e.g.atomic force microscopy(AFM),can be used to perform delicate biomechanical measurements and reveal the complex mechanical environment of biological processes.However,these... Ultrasensitive nanomechanical instruments,e.g.atomic force microscopy(AFM),can be used to perform delicate biomechanical measurements and reveal the complex mechanical environment of biological processes.However,these instruments are limited because of their size and complex feedback system.In this study,we demonstrate a miniature fiber optical nanomechanical probe(FONP)that can be used to detect the mechanical properties of single cells and in vivo tissue measurements.A FONP that can operate in air and in liquids was developed by programming a microcantilever probe on the end face of a single-mode fiber using femtosecond laser two-photon polymerization nanolithography.To realize stiffness matching of the FONP and sample,a strategy of customizing the microcantilever’s spring constant according to the sample was proposed based on structure-correlated mechanics.As a proof-of concept,three FONPs with spring constants varying from 0.421 N m^(−1)to 52.6 N m^(−1)by more than two orders of magnitude were prepared.The highest microforce sensitivity was 54.5 nmμN^(−1)and the detection limit was 2.1 nN.The Young’s modulus of heterogeneous soft materials,such as polydimethylsiloxane,muscle tissue of living mice,onion cells,and MCF-7 cells,were successfully measured,which validating the broad applicability of this method.Our strategy provides a universal protocol for directly programming fiber-optic AFMs.Moreover,this method has no special requirements for the size and shape of living biological samples,which is infeasible when using commercial AFMs.FONP has made substantial progress in realizing basic biological discoveries,which may create new biomedical applications that cannot be realized by current AFMs. 展开更多
关键词 two-photon polymerization nanolithography optical fiber sensor nanomechanical probe stiffness tunable microcantilever BIOSENSOR
下载PDF
Ultrathin and Air-Stable Lithium Metal Anodes with Superlong Cycling Life in Ether/Ester-Based Electrolytes
15
作者 Chao Luo Zihuan Tang +8 位作者 Miaomiao Zhang Xiaoyu Feng Rongjie Luo Qifei Guo Xuming Zhang Biao Gao Zhao Ding Yang Zheng Kaifu Huo 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期289-296,共8页
Ultrathin and air-stable Li metal anodes hold great promise toward high-energy and high-safety Li metal batteries(LMBs).However,the application of LMBs is technically impeded by existing Li metal anodes with large thi... Ultrathin and air-stable Li metal anodes hold great promise toward high-energy and high-safety Li metal batteries(LMBs).However,the application of LMBs is technically impeded by existing Li metal anodes with large thickness,high reactivity,and poor performance.Here,we developed a novel and scalable approach for the construction of a 10-μm-thick flexible and air-stable Li metal anode by conformally encapsulating Li within a multifunctional VN film.Specifically,the highly lithiophilic VN layer guides a uniform deposition of Li,while abundant and multilevel pores arising from assembly of ultrathin nanosheets enable a spatially confined immersion of metallic Li,thus ensuring an ultrathin and sandwiched Li anode.More impressively,the strong hydrophobicity of VN surface can effectively improve the stability of anode to humid air,whereas the highly conductive framework greatly boosts charge transfer dynamics and enhances Li utilization and high-rate capability.Benefiting from such fascinating features,the constructed Li-VN anode exhibits ultrastable cycling stability in both ether(2500 h)and carbonate(900 h)electrolytes,respectively.Moreover,even exposed to ambient air for 12 h,the anode still can retain~78%capacity,demonstrating excellent air-defendable capability.This work affords a promising strategy for fabricating high-performance,high-safety,and low-cost LMBs. 展开更多
关键词 air stable highly lithiophilic lithium metal anodes ULTRATHIN VN
下载PDF
An Air‑Rechargeable Zn Battery Enabled by Organic–Inorganic Hybrid Cathode
16
作者 Junjie Shi Ke Mao +10 位作者 Qixiang Zhang Zunyu Liu Fei Long Li Wen Yixin Hou Xinliang Li Yanan Ma Yang Yue Luying Li Chunyi Zhi Yihua Gao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期138-152,共15页
Self-charging power systems collecting energy harvesting technology and batteries are attracting extensive attention.To solve the disadvantages of the traditional integrated system,such as highly dependent on energy s... Self-charging power systems collecting energy harvesting technology and batteries are attracting extensive attention.To solve the disadvantages of the traditional integrated system,such as highly dependent on energy supply and complex structure,an airrechargeable Zn battery based on MoS_(2)/PANI cathode is reported.Benefited from the excellent conductivity desolvation shield of PANI,the MoS_(2)/PANI cathode exhibits ultra-high capacity(304.98 mAh g^(−1) in N_(2) and 351.25 mAh g^(−1) in air).In particular,this battery has the ability to collect,convert and store energy simultaneously by an airrechargeable process of the spontaneous redox reaction between the discharged cathode and O2 from air.The air-rechargeable Zn batteries display a high open-circuit voltage(1.15 V),an unforgettable discharge capacity(316.09 mAh g^(−1) and the air-rechargeable depth is 89.99%)and good air-recharging stability(291.22 mAh g^(−1) after 50 air recharging/galvanostatic current discharge cycle).Most importantly,both our quasi-solid zinc ion batteries and batteries modules have excellent performance and practicability.This work will provide a promising research direction for the material design and device assembly of the next-generation self-powered system. 展开更多
关键词 Air-rechargeable MoS_(2)/PANI Cathode Desolvation shield Energy storage mechanism Zn batteries module
下载PDF
Metallic Sb-stabilized porous silicon with stable SEI and high electron/ion conductivity boosting lithium-ion storage performance
17
作者 Jia-Guo Deng Hao-Qin Feng +6 位作者 Yu-Long Xu Si-Guang Guo Jian-Ping Li Kai-Fu Huo Ji-Jiang Fu Biao Gao Pual-K.Chu 《Rare Metals》 SCIE EI CAS CSCD 2024年第9期4234-4242,共9页
Silicon(Si)has mild discharge potential and high theoretical capacity,making it a highly desirable material for lithium-ion batteries(LIBs).Nevertheless,the excessive volume expansion,poor ion/electron conductiv ity a... Silicon(Si)has mild discharge potential and high theoretical capacity,making it a highly desirable material for lithium-ion batteries(LIBs).Nevertheless,the excessive volume expansion,poor ion/electron conductiv ity and unstable solid electrolyte interface(SEI)hinde practical application to LIBs.Herein,the metallic antimony(Sb)stabilized porous Si(SiDSb)composite was prepared by magnesiothermic reduction of Sb_(2)O_(3)and Mg_(2)Si and chemical etching to remove the by-product of MgO.The highly conductive Sb nanodots embedded in the Si liga ments promote not only the formation of conductive and stable LiF-rich SEI,but also the electron/ion transpor ability of Si.Owing to the outstanding bulk/interface stability,excellent conductivity,as well as ideal porous structure,the SiDSb electrode demonstrates a capacity of820 mAh·g^(-1)after undergoing 320 turns at 1000 mA·g^(-1).Additionally,it exhibits a stable capacity of 675 m Ah·g^(-1)when tested at a higher current density of 5000 m A·g^(-1).The results reveal a viable solution to solve three problems at the same time,namely the poor conductivity,inferior SEI and excessive volume expansion of Si,boding well for the design of Si-based materials for high-energy LIBs. 展开更多
关键词 Silicon Anodes Lithium-ion batteries ANTIMONY Solid electrolyte interphase
原文传递
Fast mode decomposition for few-mode fiber based on lightweight neural network
18
作者 赵佳佳 陈国辉 +3 位作者 毕轩 蔡汪洋 岳磊 唐明 《Chinese Optics Letters》 SCIE EI CAS CSCD 2024年第2期88-95,共8页
In this paper,we present a fast mode decomposition method for few-mode fibers,utilizing a lightweight neural network called MobileNetV3-Light.This method can quickly and accurately predict the amplitude and phase info... In this paper,we present a fast mode decomposition method for few-mode fibers,utilizing a lightweight neural network called MobileNetV3-Light.This method can quickly and accurately predict the amplitude and phase information of different modes,enabling us to fully characterize the optical field without the need for expensive experimental equipment.We train the MobileNetV3-Light using simulated near-field optical field maps,and evaluate its performance using both simulated and reconstructed near-field optical field maps.To validate the effectiveness of this method,we conduct mode decomposition experiments on a few-mode fiber supporting six linear polarization(LP)modes(LP01,LP11e,LP11o,LP21e,LP21o,LP02).The results demonstrate a remarkable average correlation of 0.9995 between our simulated and reconstructed near-field lightfield maps.And the mode decomposition speed is about 6 ms per frame,indicating its powerful real-time processing capability.In addition,the proposed network model is compact,with a size of only 6.5 MB,making it well suited for deployment on portable mobile devices. 展开更多
关键词 deep learning lightweight neural network few-mode fiber mode decomposition
原文传递
Double-ended passivator enables dark-current-suppressed colloidal quantum dot photodiodes for CMOS-integrated infrared imagers
19
作者 Peilin Liu Shuaicheng Lu +13 位作者 Jing Liu Bing Xia Gaoyuan Yang Mo Ke Xuezhi Zhao Junrui Yang Yuxuan Liu Ciyu Ge Guijie Liang Wei Chen Xinzheng Lan Jianbing Zhang Liang Gao Jiang Tang 《InfoMat》 SCIE CSCD 2024年第1期108-122,共15页
Lead sulfide(PbS)colloidal quantum dot(CQD)photodiodes integrated with silicon-based readout integrated circuits(ROICs)offer a promising solution for the next-generation short-wave infrared(SWIR)imaging technology.Des... Lead sulfide(PbS)colloidal quantum dot(CQD)photodiodes integrated with silicon-based readout integrated circuits(ROICs)offer a promising solution for the next-generation short-wave infrared(SWIR)imaging technology.Despite their potential,large-size CQD photodiodes pose a challenge due to high dark currents resulting from surface states on nonpassivated(100)facets and trap states generated by CQD fusion.In this work,we present a novel approach to address this issue by introducing double-ended ligands that supplementally passivate(100)facets of halidecapped large-size CQDs,leading to suppressed bandtail states and reduced defect concentration.Our results demonstrate that the dark current density is highly suppressed by about an order of magnitude to 9.6 nA cm^(2) at -10 mV,which is among the lowest reported for PbS CQD photodiodes.Furthermore,the performance of the photodiodes is exemplary,yielding an external quantum efficiency of 50.8%(which corresponds to a responsivity of 0.532 A W^(-1))and a specific detectivity of 2.5×10^(12) Jones at 1300 nm.By integrating CQD photodiodes with CMOS ROICs,the CQD imager provides high-resolution(640×512)SWIR imaging for infrared penetration and material discrimination. 展开更多
关键词 CMOS integration colloidal quantum dots dark current suppression double-ended passivation infrared imager
原文传递
Miniaturized and highly sensitive fiber-optic Fabry–Perot sensor for mHz infrasound detection
20
作者 PEIJIE WANG YUFENG PAN +3 位作者 JIANGSHAN ZHANG JIE ZHAI DEMING LIU PING LU 《Photonics Research》 SCIE EI CAS CSCD 2024年第5期969-978,共10页
Infrasound detection is important in natural disasters monitoring,military defense,underwater acoustic detection,and other domains.Fiber-optic Fabry–Perot(FP)acoustic sensors have the advantages of small structure si... Infrasound detection is important in natural disasters monitoring,military defense,underwater acoustic detection,and other domains.Fiber-optic Fabry–Perot(FP)acoustic sensors have the advantages of small structure size,long-distance detection,immunity to electromagnetic interference,and so on.The size of an FP sensor depends on the transducer diaphragm size and the back cavity volume.However,a small transducer diaphragm size means a low sensitivity.Moreover,a small back cavity volume will increase the low cut-off frequency of the sensor.Hence,it is difficult for fiber-optic FP infrasound sensors to simultaneously achieve miniaturization,high sensitivity,and extremely low detectable frequency.In this work,we proposed and demonstrated a miniaturized and highly sensitive fiber-optic FP sensor for m Hz infrasound detection by exploiting a Cr-Ag-Au composite acoustic-optic transducer diaphragm and a MEMS technique-based spiral micro-flow hole.The use of the spiral micro-flow hole as the connecting hole greatly reduced the volume of the sensor and decreased the low-frequency limit,while the back cavity volume was not increased.Combined with the Cr-Ag-Au composite diaphragm,a detection sensitivity of-123.19 dB re 1 rad∕μPa at 5 Hz and a minimum detectable pressure(MDP)of1.2 mPa∕Hz^(1∕2)at 5 Hz were achieved.The low detectable frequency can reach 0.01 Hz and the flat response range was 0.01–2500 Hz with a sensitivity fluctuation of±1.5 d B.Moreover,the size of the designed sensor was only 12 mm×Φ12.7 mm.These excellent characteristics make the sensor have great practical application prospects. 展开更多
关键词 SOUND fiber CAVITY
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部