期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Thermal Behavior, Non-isothermal Decomposition Reaction Kinetics of Copper(Ⅱ) Salt of 4-Hydroxy-3,5-dinitropyridine and Its Application in Propellant 被引量:2
1
作者 CHENPei ZHAOFeng-qi +5 位作者 LUOyang HURong-zu GAOSheng-li ZHENGYu-mei DENGMin-zhi GAOYin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第1期100-103,共4页
The thermal behavior and kinetic parameters of the major exothermic decomposition reaction of the title compound in a temperature-programmed mode were studied by means of TG-DTG and DSC. The critical temperature of th... The thermal behavior and kinetic parameters of the major exothermic decomposition reaction of the title compound in a temperature-programmed mode were studied by means of TG-DTG and DSC. The critical temperature of thermal explosion was calculated. The effect of the title compound on the combustion characteristic of composition modifier double base propellant containing RDX was explored with a strand burner. The results show that the kinetic model function in differential forms, the apparent activation energy(E a) and the pre-exponential factor(A) of the major exothermic decomposition reaction are 3(1-α)[-ln(1-α)] 2/3, 190.56 kJ/mol and 10 13.39 s -1, respectively. The critical temperature of thermal explosion of the compound is 353.08 ℃. The kinetic equation of the major exothermic decomposition process of the title compound at 0.1 MPa could be expressed as dα/dT=10 14.65(1-α)[-ln(1-α)] 2/3 e -2.2920×104/T. As an auxiliary catalyzer, the title compound can help the main catalyzer of lead salt of 4-hydroxy-3,5-dinitropyridine to accelerate the burning rate and reduce the pressure exponent of RDX-CMDB propellant. 展开更多
关键词 Thermal behavior Decomposition kinetics Copper(Ⅱ) salt of 4-hydroxy-3 5-dinitropyridine Application PROPELLANT
下载PDF
Thermal Decomposition Kinetics of Lead 2,4,6-Trinitroresorcinate Monohydrate 被引量:1
2
作者 HURong-zu CHENSan-ping +8 位作者 GAOSheng-li ZHAOFeng-qi SONGJi-rong SHIQi-zhen CHENPei LUOYang ZHAOHong-an YAOPu LIJing 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第5期631-636,共6页
The non-isothermal decomposition of lead 2,4,6-trinitroresorcinate monohydrate, Pb(TNR)·H\-2O, was investigated by means of TG-DTA, DSC and IR. The thermal decomposition mechanism and the dissociated kinetics wer... The non-isothermal decomposition of lead 2,4,6-trinitroresorcinate monohydrate, Pb(TNR)·H\-2O, was investigated by means of TG-DTA, DSC and IR. The thermal decomposition mechanism and the dissociated kinetics were also investigated. The kinetic parameters were obtained from the analysis of the DSC curves by integral and differential methods. The most probable kinetic model function of the dehydration reaction of \{Pb(TNR)·H\-2O\} was suggested by the comparison of the kinetic parameters. 展开更多
关键词 Pb(TNR)·H\-2O DSC Non-isothermal kinetics TG-DTA Thermal decomposition
下载PDF
Kinetics and Mechanism of Exothermic First-stage Decomposition Reaction of 2,6-Bis(2,2,2-trinitroethyl)glycoluril 被引量:1
3
作者 HURong-zu YANGDe-suo +6 位作者 GAOSheng-li ZHAOFeng-qi CHENSan-ping CHENPei LUOYang ZHAOHong-an SHIQi-zhen 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第5期624-626,共3页
The thermal behavior, mechanism and kinetic parameters of the exothermic first-stage decomposition of the title compound in a temperature-programmed mode were investigated by means of DSC, TG-DTG and IR. The reaction ... The thermal behavior, mechanism and kinetic parameters of the exothermic first-stage decomposition of the title compound in a temperature-programmed mode were investigated by means of DSC, TG-DTG and IR. The reaction mechanism was proposed. The kinetic model function in differential form, apparent activation energy(\%E\%\-a) and pre-exponential factor(\%A\%) of this reaction are (3/2)(1-\%α\%)\[-ln(1-\%α\%)\]\+\{1/3\}, 185\^52 kJ/mol and 10\+\{17\^78\} s\+\{-1\}, respectively. The critical temperature of the thermal explosion of the compound is 201\^30 ℃. The values of Δ\%S\%\+≠, Δ\%H\%\+≠ and Δ\%G\%\+≠ of this reaction are 72\^46 J/(mol· K), 175\^1 kJ/mol and 141\^50 kJ/mol, respectively. 展开更多
关键词 DECOMPOSITION TBHTDD KINETICS Mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部