Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero....Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.展开更多
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr...Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.展开更多
Traditional expert-designed branching rules in branch-and-bound(B&B) are static, often failing to adapt to diverse and evolving problem instances. Crafting these rules is labor-intensive, and may not scale well wi...Traditional expert-designed branching rules in branch-and-bound(B&B) are static, often failing to adapt to diverse and evolving problem instances. Crafting these rules is labor-intensive, and may not scale well with complex problems.Given the frequent need to solve varied combinatorial optimization problems, leveraging statistical learning to auto-tune B&B algorithms for specific problem classes becomes attractive. This paper proposes a graph pointer network model to learn the branch rules. Graph features, global features and historical features are designated to represent the solver state. The graph neural network processes graph features, while the pointer mechanism assimilates the global and historical features to finally determine the variable on which to branch. The model is trained to imitate the expert strong branching rule by a tailored top-k Kullback-Leibler divergence loss function. Experiments on a series of benchmark problems demonstrate that the proposed approach significantly outperforms the widely used expert-designed branching rules. It also outperforms state-of-the-art machine-learning-based branch-and-bound methods in terms of solving speed and search tree size on all the test instances. In addition, the model can generalize to unseen instances and scale to larger instances.展开更多
Most multimodal multi-objective evolutionary algorithms(MMEAs)aim to find all global Pareto optimal sets(PSs)for a multimodal multi-objective optimization problem(MMOP).However,in real-world problems,decision makers(D...Most multimodal multi-objective evolutionary algorithms(MMEAs)aim to find all global Pareto optimal sets(PSs)for a multimodal multi-objective optimization problem(MMOP).However,in real-world problems,decision makers(DMs)may be also interested in local PSs.Also,searching for both global and local PSs is more general in view of dealing with MMOPs,which can be seen as generalized MMOPs.Moreover,most state-of-theart MMEAs exhibit poor convergence on high-dimension MMOPs and are unable to deal with constrained MMOPs.To address the above issues,we present a novel multimodal multiobjective coevolutionary algorithm(Co MMEA)to better produce both global and local PSs,and simultaneously,to improve the convergence performance in dealing with high-dimension MMOPs.Specifically,the Co MMEA introduces two archives to the search process,and coevolves them simultaneously through effective knowledge transfer.The convergence archive assists the Co MMEA to quickly approach the Pareto optimal front.The knowledge of the converged solutions is then transferred to the diversity archive which utilizes the local convergence indicator and the-dominance-based method to obtain global and local PSs effectively.Experimental results show that Co MMEA is competitive compared to seven state-of-the-art MMEAs on fifty-four complex MMOPs.展开更多
Time series clustering is a challenging problem due to the large-volume,high-dimensional,and warping characteristics of time series data.Traditional clustering methods often use a single criterion or distance measure,...Time series clustering is a challenging problem due to the large-volume,high-dimensional,and warping characteristics of time series data.Traditional clustering methods often use a single criterion or distance measure,which may not capture all the features of the data.This paper proposes a novel method for time series clustering based on evolutionary multi-tasking optimization,termed i-MFEA,which uses an improved multifactorial evolutionary algorithm to optimize multiple clustering tasks simultaneously,each with a different validity index or distance measure.Therefore,i-MFEA can produce diverse and robust clustering solutions that satisfy various preferences of decision-makers.Experiments on two artificial datasets show that i-MFEA outperforms single-objective evolutionary algorithms and traditional clustering methods in terms of convergence speed and clustering quality.The paper also discusses how i-MFEA can address two long-standing issues in time series clustering:the choice of appropriate similarity measure and the number of clusters.展开更多
Accurately predicting the chiller coefficient of performance(COP)is essential for improving the energy efficiency of heating,ventilation,and air conditioning(HVAC)systems,significantly contributing to energy conservat...Accurately predicting the chiller coefficient of performance(COP)is essential for improving the energy efficiency of heating,ventilation,and air conditioning(HVAC)systems,significantly contributing to energy conservation in buildings.Traditional performance prediction methods often overlook the dynamic interaction among sensor variables and face challenges in using extensive historical data efficiently,which impedes accurate predictions.To overcome these challenges,this paper proposes an innovative on-site chiller performance prediction method employing a dynamic graph convolutional network(GCN)enhanced by association rules.The distinctive feature of this method is constructing an association graph bank containing static graphs in each operating mode by mining the association rules between various sensor variables in historical operating data.A real-time graph is created by analyzing the correlation between various sensor variables in the current operating data.This graph is fused online with the static graph in the current operating mode to obtain a dynamic graph used for feature extraction and training of GCN.The effectiveness of this method has been empirically confirmed through the operational data of an actual building chiller system.Comparative analysis with state-of-the-art methods highlights the superior performance of the proposed method.展开更多
基金supported by the Scientific Research Project of Xiang Jiang Lab(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(ZC23112101-10)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJ-Z03)the Science and Technology Innovation Program of Humnan Province(2023RC1002)。
文摘Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.
基金support by the Open Project of Xiangjiang Laboratory(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(CX20230074)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03)the Science and Technology Innovation Program of Humnan Province(2023RC1002).
文摘Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
基金supported by the Open Project of Xiangjiang Laboratory (22XJ02003)Scientific Project of the National University of Defense Technology (NUDT)(ZK21-07, 23-ZZCX-JDZ-28)+1 种基金the National Science Fund for Outstanding Young Scholars (62122093)the National Natural Science Foundation of China (72071205)。
文摘Traditional expert-designed branching rules in branch-and-bound(B&B) are static, often failing to adapt to diverse and evolving problem instances. Crafting these rules is labor-intensive, and may not scale well with complex problems.Given the frequent need to solve varied combinatorial optimization problems, leveraging statistical learning to auto-tune B&B algorithms for specific problem classes becomes attractive. This paper proposes a graph pointer network model to learn the branch rules. Graph features, global features and historical features are designated to represent the solver state. The graph neural network processes graph features, while the pointer mechanism assimilates the global and historical features to finally determine the variable on which to branch. The model is trained to imitate the expert strong branching rule by a tailored top-k Kullback-Leibler divergence loss function. Experiments on a series of benchmark problems demonstrate that the proposed approach significantly outperforms the widely used expert-designed branching rules. It also outperforms state-of-the-art machine-learning-based branch-and-bound methods in terms of solving speed and search tree size on all the test instances. In addition, the model can generalize to unseen instances and scale to larger instances.
基金supported by the Open Project of Xiangjiang Laboratory(22XJ02003)the National Natural Science Foundation of China(62122093,72071205)。
文摘Most multimodal multi-objective evolutionary algorithms(MMEAs)aim to find all global Pareto optimal sets(PSs)for a multimodal multi-objective optimization problem(MMOP).However,in real-world problems,decision makers(DMs)may be also interested in local PSs.Also,searching for both global and local PSs is more general in view of dealing with MMOPs,which can be seen as generalized MMOPs.Moreover,most state-of-theart MMEAs exhibit poor convergence on high-dimension MMOPs and are unable to deal with constrained MMOPs.To address the above issues,we present a novel multimodal multiobjective coevolutionary algorithm(Co MMEA)to better produce both global and local PSs,and simultaneously,to improve the convergence performance in dealing with high-dimension MMOPs.Specifically,the Co MMEA introduces two archives to the search process,and coevolves them simultaneously through effective knowledge transfer.The convergence archive assists the Co MMEA to quickly approach the Pareto optimal front.The knowledge of the converged solutions is then transferred to the diversity archive which utilizes the local convergence indicator and the-dominance-based method to obtain global and local PSs effectively.Experimental results show that Co MMEA is competitive compared to seven state-of-the-art MMEAs on fifty-four complex MMOPs.
基金supported by the Open Project of Xiangjiang Laboratory(No.22XJ02003)the National Natural Science Foundation of China(No.62122093).
文摘Time series clustering is a challenging problem due to the large-volume,high-dimensional,and warping characteristics of time series data.Traditional clustering methods often use a single criterion or distance measure,which may not capture all the features of the data.This paper proposes a novel method for time series clustering based on evolutionary multi-tasking optimization,termed i-MFEA,which uses an improved multifactorial evolutionary algorithm to optimize multiple clustering tasks simultaneously,each with a different validity index or distance measure.Therefore,i-MFEA can produce diverse and robust clustering solutions that satisfy various preferences of decision-makers.Experiments on two artificial datasets show that i-MFEA outperforms single-objective evolutionary algorithms and traditional clustering methods in terms of convergence speed and clustering quality.The paper also discusses how i-MFEA can address two long-standing issues in time series clustering:the choice of appropriate similarity measure and the number of clusters.
基金supported in part by the Science and Technology Innovation Program of Hunan Province(No.2022RC1090)in part by the National Natural Science Foundation of China(No.62173349)+2 种基金in part by the Natural Science Foundation of Hunan Province(No.2022J20076)in part by the Innovation Driven Projection of Central South University(No.2023CXQD073)in part by the Major Program of Xiangjiang Laboratory(No.22XJ01005).
文摘Accurately predicting the chiller coefficient of performance(COP)is essential for improving the energy efficiency of heating,ventilation,and air conditioning(HVAC)systems,significantly contributing to energy conservation in buildings.Traditional performance prediction methods often overlook the dynamic interaction among sensor variables and face challenges in using extensive historical data efficiently,which impedes accurate predictions.To overcome these challenges,this paper proposes an innovative on-site chiller performance prediction method employing a dynamic graph convolutional network(GCN)enhanced by association rules.The distinctive feature of this method is constructing an association graph bank containing static graphs in each operating mode by mining the association rules between various sensor variables in historical operating data.A real-time graph is created by analyzing the correlation between various sensor variables in the current operating data.This graph is fused online with the static graph in the current operating mode to obtain a dynamic graph used for feature extraction and training of GCN.The effectiveness of this method has been empirically confirmed through the operational data of an actual building chiller system.Comparative analysis with state-of-the-art methods highlights the superior performance of the proposed method.