Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have bee...Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have been well introduced.The definition, measurement methods and the evolution process of the dynamic topological photonics are demonstrated to better understand the physical diagram. This review is meant to bring the readers a different perspective on topological photonics, grasp the advanced progress of dynamic topology, and inspire ideas about future prospects.展开更多
Perovskite solar cells have reached a power-conversion efficiency(PCE) of 25.6%,showing great potential with reliable moisture and heat stability.Most results are achieved on small-area devices,using conventional thin...Perovskite solar cells have reached a power-conversion efficiency(PCE) of 25.6%,showing great potential with reliable moisture and heat stability.Most results are achieved on small-area devices,using conventional thin-film processing technologies like spin-coating method.However,such approaches may not be upscaled for large-area substrates.Thus,strategies and materials need to be developed for manufacturing processing routes to realize future commercial photovoltaic fabrications.Notable results have been achieved on large-area perovskite solar cells.In this review,similarities and differences of large-area perovskite fabrication mechanisms between the various pathways are investigated,especially on the parameters affecting the nucleation and crystal growth kinetics.Moreover,the methods for large-area transporting layers and electrodes are discussed,and some key issues from cells to modules.Challenges and opportunities are proposed to pave the way of high-efficiency perovskite solar modules.展开更多
Perovskite lasers,due to their superiority in feasible production and wavelength tunability,find application in optical communication[1].Since the discovery of stimulated emission from CsPbCl3 microcrystalline at liqu...Perovskite lasers,due to their superiority in feasible production and wavelength tunability,find application in optical communication[1].Since the discovery of stimulated emission from CsPbCl3 microcrystalline at liquid-nitrogen temperature[2],successive breakthroughs in perovskite lasers have been made.展开更多
As the main distribution place of deep-level defects and the entrance of water, the interface is critical to determining both the power conversion efficiency(PCE) and the stability of perovskite solar cells(PSCs). Sui...As the main distribution place of deep-level defects and the entrance of water, the interface is critical to determining both the power conversion efficiency(PCE) and the stability of perovskite solar cells(PSCs). Suitable interface design can dramatically passivate interface defects and optimize energy level alignment for suppressing the nonradiative recombination and effectively extracting the photogenerated carriers towards higher PCE. Meanwhile, a proper interface design can also block the interface diffusion of ions for high operational stability. Therefore, interface modification is of great significance to make the PSCs more efficient and stable. Upon optimized material choices, the three-dimensional halide perovskite graded junction layer, low-dimensional halide perovskite interface layer and organic salt passivation layer have been constructed on perovskite films for superior PSCs, yet a systematic review of them is missing. Thus, a guide and summary of recent advances in modulating the perovskite films interface is necessary for the further development of more efficient interface modification.展开更多
Moirématerials,composed of two single-layer two-dimensional semiconductors,are important because they are good platforms for studying strongly correlated physics.Among them,moirématerials based on transition...Moirématerials,composed of two single-layer two-dimensional semiconductors,are important because they are good platforms for studying strongly correlated physics.Among them,moirématerials based on transition metal dichalcogenides(TMDs)have been intensively studied.The hetero-bilayer can support moiréinterlayer excitons if there is a small twist angle or small lattice constant difference between the TMDs in the hetero-bilayer and form a type-Ⅱ band alignment.The coupling of moiréinterlayer excitons to cavity modes can induce exotic phenomena.Here,we review recent advances in the coupling of moiréinterlayer excitons to cavities,and comment on the current difficulties and possible future research directions in this field.展开更多
Photonic topological insulators with robust boundary states can enable great applications for optical communication and quantum emission,such as unidirectional waveguide and single-mode laser.However,because of the di...Photonic topological insulators with robust boundary states can enable great applications for optical communication and quantum emission,such as unidirectional waveguide and single-mode laser.However,because of the diffraction limit of light,the physical insight of topological resonance remains unexplored in detail,like the dark line that exists with the crys-talline symmetry-protected topological edge state.Here,we experimentally observe the dark line of the Z_(2)photonic topo-logical insulator in the visible range by photoluminescence and specify its location by cathodoluminescence characteriza-tion,and elucidate its mechanism with the p-d orbital electromagnetic field distribution which calculated by numerical sim-ulation.Our investigation provides a deeper understanding of Z_(2)topological edge states and may have great signific-ance to the design of future on-chip topological devices.展开更多
Proton transfer(PT) is a process of fundamental importance in hydrogen(H)-bonded systems. At cryogenic or moderate temperatures, pronounced quantum tunneling may happen due to the light mass of H. Single PT processes ...Proton transfer(PT) is a process of fundamental importance in hydrogen(H)-bonded systems. At cryogenic or moderate temperatures, pronounced quantum tunneling may happen due to the light mass of H. Single PT processes have been extensively studied. However, for PT involving multiple protons, our understanding remains in its infancy stage due to the complicated interplay between the high-dimensional nature of the process and the quantum nature of tunneling. Cyclic H-bonded systems are typical examples of this, where PT can happen separately via a “stepwise” mechanism or collectively via a “concerted” mechanism. In the first scenario, some protons hop first, typically resulting in metastable intermediate states(ISs) and the reaction pathway passes through multiple transition states. Whilst in the concerted mechanism, all protons move simultaneously, resulting in only one barrier along the path. Here, we review previous experimental and theoretical studies probing quantum tunneling in several representative systems for cyclic PT, with more focus on recent theoretical findings with path-integral based methods. For gas-phase porphyrin and porphycene, as well as porphycene on a metal surface, theoretical predictions are consistent with experimental observations, and enhance our understanding of the processes. Yet, discrepancies in the PT kinetic isotope effects between experiment and theory appear in two systems,most noticeably in water tetramer adsorbed on NaCl(001) surface, and also hinted in porphycene adsorbed on Ag(110)surface. In ice Ih, controversy surrounding concerted PT remains even between experiments. Despite of the recent progress in both theoretical methods and experimental techniques, multiple PT processes in cyclic H-bonded systems remain to be mysterious.展开更多
Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation ...Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.展开更多
With the rapid development of information and communication technology,a key objective in the field of optoelectronic integrated devices is to reduce the nano-laser size and energy consumption.Photonics nanolasers are...With the rapid development of information and communication technology,a key objective in the field of optoelectronic integrated devices is to reduce the nano-laser size and energy consumption.Photonics nanolasers are unable to exceed the diffraction limit and typically exhibit low modulation rates of several GHz.In contrast,plasmonic nanolaser utilizes highly confined surface plasmon polariton(SPP)mode that can exceed diffraction limit and their strong Purcell effect can accelerate the modulation rates to several THz.Herein,we propose a parametrically tunable artificial plasmonic nanolasers based on metal–insulator–semiconductor–insulator–metal(MISIM)structure,which demonstrates its ability to compress the mode field volume toλ/14.As the pump power increases,the proposed artificial plasmonic nanolaser exhibits 20-nm-wide output spectrum.Additionally,we investigate the effects of various cavity parameters on the nanolaser’s output threshold,offering potentials for realizing low-threshold artificial plasmonic nanolasers.Moreover,we observe a blue shift in the center wavelength of the nanolaser output with thinner gain layer thickness,predominantly attributed to the increased exciton–photon coupling strength.Our work brings inspiration to several areas,including spaser-based interconnects,nano-LEDs,spontaneous emission control,miniaturization of photon condensates,eigenmode engineering of plasmonic nanolasers,and optimal design driven by artificial intelligence(AI).展开更多
Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited...Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.展开更多
Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it elimina...Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it eliminates inherent bandwidth limitations and meanwhile exhibits the potential to provide unparalleled scalability and flexibility,particularly through integrated photonics.However,by far the on-chip solutions for optical signal processing are often tailored to specific tasks,which lacks versatility across diverse applications.Here,we propose a streamlined chip-level signal processing architecture that integrates different active and passive building blocks in silicon-on-insulator(SOI)platform with a compact and efficient manner.Comprehensive and in-depth analyses for the architecture are conducted at levels of device,system,and application.Accompanied by appropriate configuring schemes,the photonic circuitry supports loading and processing both analog and digital signals simultaneously.Three distinct tasks are facilitated with one single chip across several mainstream fields,spanning optical computing,microwave photonics,and optical communications.Notably,it has demonstrated competitive performance in functions like image processing,spectrum filtering,and electro-optical bandwidth equalization.Boasting high universality and a compact form factor,the proposed architecture is poised to be instrumental for next-generation functional fusion systems.展开更多
The basic indexes of all-optical integrated photonic circuits include high-density integration,ultrafast response and ultralow energy consumption.Traditional methods mainly adopt conventional micro/nano-structures.The...The basic indexes of all-optical integrated photonic circuits include high-density integration,ultrafast response and ultralow energy consumption.Traditional methods mainly adopt conventional micro/nano-structures.The overall size of the circuit is large,usually reaches hundreds of microns.Besides,it is difficult to balance the ultrafast response and ultra-low energy consumption problem,and the crosstalk between two traditional devices is difficult to overcome.Here,we propose and experimentally demonstrate an approach based on inverse design method to realize a high-density,ultrafast and ultra-low energy consumption integrated photonic circuit with two all-optical switches controlling the input states of an all-optical XOR logic gate.The feature size of the whole circuit is only 2.5μm×7μm,and that of a single device is 2μm×2μm.The distance between two adjacent devices is as small as 1.5μm,within wavelength magnitude scale.Theoretical response time of the circuit is 150 fs,and the threshold energy is within 10 fJ/bit.We have also considered the crosstalk problem.The circuit also realizes a function of identifying two-digit logic signal results.Our work provides a new idea for the design of ultrafast,ultra-low energy consumption all-optical devices and the implementation of high-density photonic integrated circuits.展开更多
The rotation control of particles in optical tweezers is often subject to the spin or orbit angular momentum induced optical torque,which is susceptible to the mechanical and morphological properties of individual par...The rotation control of particles in optical tweezers is often subject to the spin or orbit angular momentum induced optical torque,which is susceptible to the mechanical and morphological properties of individual particle.Here we report on a robust and high-speed rotation control in optical tweezers by using a novel linear polarization synthesis based on optical heterodyne interference between two circularly polarized lights with opposite handedness.The synthesized linear polarization can be rotated in a hopping-free scheme at arbitrary speed determined electronically by the heterodyne frequency between two laser fields.The experimental demonstration of a trapped vaterite particle in water shows that the precisely controlled rotation frequency of 300 Hz can be achieved.The proposed method will find promising applications in optically driven micro-gears,fluidic pumps and rotational micro-rheology.展开更多
Although two-dimensional perovskite devices are highly stable,they also lead to a number of challenges.For instance,the introduction of large organic amines makes crystallization process complicated,causing problems s...Although two-dimensional perovskite devices are highly stable,they also lead to a number of challenges.For instance,the introduction of large organic amines makes crystallization process complicated,causing problems such as generally small grain size and blocked charge transfer.In this work,imprint assisted with methylamine acetate were used to improve the morphology of the film,optimize the internal phase distribution,and enhance the charge transfer of the perovskite film.Specifically,imprint promoted the dispersion of spacer cations in the recrystallization process with the assistance of methylamine acetate,thus inhibited the formation of low-n phase induced by the aggregation of spacer cations and facilitated the formation of 3D-like phase.In this case,the corresponding quasi-2D perovskite solar cells delivered improved efficiency and exhibited superior stability.Our work provides an effective strategy to obtain uniform phase distribution for quasi-2D perovskite.展开更多
As the family of magnetic materials is rapidly growing,two-dimensional(2D)van der Waals(vdW)magnets have attracted increasing attention as a platform to explore fundamental physical problems of magnetism and their pot...As the family of magnetic materials is rapidly growing,two-dimensional(2D)van der Waals(vdW)magnets have attracted increasing attention as a platform to explore fundamental physical problems of magnetism and their potential applications.This paper reviews the recent progress on emergent vd W magnetic compounds and their potential applications in devices.First,we summarize the current vd W magnetic materials and their synthetic methods.Then,we focus on their structure and the modulation of magnetic properties by analyzing the representative vd W magnetic materials with different magnetic structures.In addition,we pay attention to the heterostructures of vd W magnetic materials,which are expected to produce revolutionary applications of magnetism-related devices.To motivate the researchers in this area,we finally provide the challenges and outlook on 2D vd W magnetism.展开更多
Owing to weak light-matter interactions in natural materials,it is difficult to dynamically tune and switch emission polariza-tion states of plasmonic emitters(or antennas)at nanometer scales.Here,by using a control l...Owing to weak light-matter interactions in natural materials,it is difficult to dynamically tune and switch emission polariza-tion states of plasmonic emitters(or antennas)at nanometer scales.Here,by using a control laser beam to induce a bubble(n=1.0)in water(n=1.333)to obtain a large index variation as high as|Δn|=0.333,the emission polarization of an ultra-small plasmonic emitter(~0.4λ^(2))is experimentally switched at nanometer scales.The plasmonic emitter consists of two orthogonal subwavelength metallic nanogroove antennas on a metal surface,and the separation of the two anten-nas is only s_(x)=120 nm.The emission polarization state of the plasmonic emitter is related to the phase difference between the emission light from the two antennas.Because of a large refractive index variation(|Δn|=0.333),the phase difference is greatly changed when a microbubble emerges in water under a low-intensity control laser.As a result,the emission polarization of the ultra-small plasmonic emitter is dynamically switched from an elliptical polarization state to a linear polarization state,and the change of the degree of linear polarization is as high asΔγ≈0.66.展开更多
Quantum communications aim to share encryption keys between the transmitters and receivers governed by the laws of quantum mechanics.Integrated quantum photonics offers significant advantages of dense integration,high...Quantum communications aim to share encryption keys between the transmitters and receivers governed by the laws of quantum mechanics.Integrated quantum photonics offers significant advantages of dense integration,high stability and scalability,which enables a vital platform for the implementation of quantum information processing and quantum communications.This article reviews recent experimental progress and advances in the development of integrated quantum photonic devices and systems for quantum communications and quantum networks.展开更多
A surrounding electromagnetic environment can engineer spontaneous emissions from quantum emitters through the Purcell effect.For instance,a plasmonic antenna can efficiently confine an electromagnetic field and enhan...A surrounding electromagnetic environment can engineer spontaneous emissions from quantum emitters through the Purcell effect.For instance,a plasmonic antenna can efficiently confine an electromagnetic field and enhance the fluorescent process.In this study,we demonstrate that a photonic microcavity can modulate plasmon-enhanced fluorescence by engineering the local electromagnetic environment.Consequently,we constructed a plasmon-enhanced emitter(PE-emitter),which comprised a nanorod and a nanodiamond,using the nanomanipulation technique.Furthermore,we controlled a polystyrene sphere approaching the PE-emitter and investigated in situ the associated fluorescent spectrum and lifetime.The emission of PE-emitter can be enhanced resonantly at the photonic modes as compared to that within the free spectral range.The spectral shape modulated by photonic modes is independent of the separation between the PS sphere and PEemitter.The band integral of the fluorescence decay rate can be enhanced or suppressed after the PS sphere couples to the PE-emitters,depending on the coupling strength between the plasmonic antenna and the photonic cavity.These findings can be utilized in sensing and imaging applications.展开更多
Two-dimensional(2D)materials have been recognized as a type of potential channel material to replace silicon in future field-effect transistors(FETs)by the International Technology Roadmap for Semiconductors(ITRS)and ...Two-dimensional(2D)materials have been recognized as a type of potential channel material to replace silicon in future field-effect transistors(FETs)by the International Technology Roadmap for Semiconductors(ITRS)and its succesor the International Roadmap for Devices and Systems(IRDS)[1−4].Substantial first principle quantum transport simulations have predicted that many 2D transistors,including those with MoS2,WSe2,phosphorene,and Bi2O2Se channels,own excellent device performance and are able to extend Moore’s law down to the sub-10 nm scale[4].展开更多
At present,the development of perovskite solar cells(PSCs)is progressing rapidly,but the issue of poor stability remains a significant challenge.Achieving a stable precursor solution is crucial for the large-scale pro...At present,the development of perovskite solar cells(PSCs)is progressing rapidly,but the issue of poor stability remains a significant challenge.Achieving a stable precursor solution is crucial for the large-scale production of high-quality PSC films.In this study,we successfully developed a strategy to improve the long-term stability of the precursor solution and improve device performance by employing 1-n-butyl-3-methylimidazolium di-n-butyl phosphate(BMIMBP)as an anti-aging additive.The BP−component inhibits the reactivity of I−and formamidinium ion through multiple chemical bonds,thereby stabilizing the precursor solution.In addition,the BMIM+component,which contains an amino group,can form two-dimensional perovskite internally,further enhancing the device stability.This strategy provides valuable guidance for achieving long-term stability in solar cells.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant No.2018YFB2200403)the National Natural Science Foundation of China (Grant Nos.91950204 and 92150302)。
文摘Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have been well introduced.The definition, measurement methods and the evolution process of the dynamic topological photonics are demonstrated to better understand the physical diagram. This review is meant to bring the readers a different perspective on topological photonics, grasp the advanced progress of dynamic topology, and inspire ideas about future prospects.
基金supported by the National Key Research and Development Program of China(Nos.2019YFA0707003 and 2019YFE0114100)the National Natural Science Foundation of China(NSFC 51872007)Beijing Municipal Natural Science Foundation(No.7202094).
文摘Perovskite solar cells have reached a power-conversion efficiency(PCE) of 25.6%,showing great potential with reliable moisture and heat stability.Most results are achieved on small-area devices,using conventional thin-film processing technologies like spin-coating method.However,such approaches may not be upscaled for large-area substrates.Thus,strategies and materials need to be developed for manufacturing processing routes to realize future commercial photovoltaic fabrications.Notable results have been achieved on large-area perovskite solar cells.In this review,similarities and differences of large-area perovskite fabrication mechanisms between the various pathways are investigated,especially on the parameters affecting the nucleation and crystal growth kinetics.Moreover,the methods for large-area transporting layers and electrodes are discussed,and some key issues from cells to modules.Challenges and opportunities are proposed to pave the way of high-efficiency perovskite solar modules.
基金supported by the National Natural Science Foundation of China(11874074 and 11527901)the National Natural Science Foundation of China(51773045,21772030,51922032,and 21961160720)for financial support+2 种基金the National Key Research and Development Program of China(2018YFA0704400)the National Key Research and Development Program of China(2017YFA0206600)Guangdong Major Project of Basic and Applied Basic Research(2020B0301030009)。
文摘Perovskite lasers,due to their superiority in feasible production and wavelength tunability,find application in optical communication[1].Since the discovery of stimulated emission from CsPbCl3 microcrystalline at liquid-nitrogen temperature[2],successive breakthroughs in perovskite lasers have been made.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0707003 and 2019YFE0114100)the National Natural Science Foundation of China (Grant No. 51872007)Beijing Municipal Natural Science Foundation, China (Grant No. 7202094)。
文摘As the main distribution place of deep-level defects and the entrance of water, the interface is critical to determining both the power conversion efficiency(PCE) and the stability of perovskite solar cells(PSCs). Suitable interface design can dramatically passivate interface defects and optimize energy level alignment for suppressing the nonradiative recombination and effectively extracting the photogenerated carriers towards higher PCE. Meanwhile, a proper interface design can also block the interface diffusion of ions for high operational stability. Therefore, interface modification is of great significance to make the PSCs more efficient and stable. Upon optimized material choices, the three-dimensional halide perovskite graded junction layer, low-dimensional halide perovskite interface layer and organic salt passivation layer have been constructed on perovskite films for superior PSCs, yet a systematic review of them is missing. Thus, a guide and summary of recent advances in modulating the perovskite films interface is necessary for the further development of more efficient interface modification.
基金supported by the National Key R&D Program of China(Grant No.2018YFA036900)the Beijing Natural Science Foundation(Grant No.JQ21018)。
文摘Moirématerials,composed of two single-layer two-dimensional semiconductors,are important because they are good platforms for studying strongly correlated physics.Among them,moirématerials based on transition metal dichalcogenides(TMDs)have been intensively studied.The hetero-bilayer can support moiréinterlayer excitons if there is a small twist angle or small lattice constant difference between the TMDs in the hetero-bilayer and form a type-Ⅱ band alignment.The coupling of moiréinterlayer excitons to cavity modes can induce exotic phenomena.Here,we review recent advances in the coupling of moiréinterlayer excitons to cavities,and comment on the current difficulties and possible future research directions in this field.
基金supported by the National Key Research and Development Program of China (grant no.2017YFA0206000)Beijing Natural Science Foundation (grant nos. Z180011)+3 种基金the National Key Research and Development Program of China (grant nos. 2020YFA0211300, 2017YFA0205700, 2019YFA0210203,2018YFA0306200)National Science Foundation of China (grant nos. 12027807, 61521004, 21790364 and 11625418)PKUBaidu Fund Project (grant no.2020BD023)High-performance Computing Platform of Peking University
文摘Photonic topological insulators with robust boundary states can enable great applications for optical communication and quantum emission,such as unidirectional waveguide and single-mode laser.However,because of the diffraction limit of light,the physical insight of topological resonance remains unexplored in detail,like the dark line that exists with the crys-talline symmetry-protected topological edge state.Here,we experimentally observe the dark line of the Z_(2)photonic topo-logical insulator in the visible range by photoluminescence and specify its location by cathodoluminescence characteriza-tion,and elucidate its mechanism with the p-d orbital electromagnetic field distribution which calculated by numerical sim-ulation.Our investigation provides a deeper understanding of Z_(2)topological edge states and may have great signific-ance to the design of future on-chip topological devices.
基金Project supported by the National Basic Research Programs of China (Grant No.2021YFA1400503)the National Natural Science Foundation of China (Grant No.11934003)+1 种基金the Beijing Natural Science Foundation (Grant No.Z200004)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB33010400)。
文摘Proton transfer(PT) is a process of fundamental importance in hydrogen(H)-bonded systems. At cryogenic or moderate temperatures, pronounced quantum tunneling may happen due to the light mass of H. Single PT processes have been extensively studied. However, for PT involving multiple protons, our understanding remains in its infancy stage due to the complicated interplay between the high-dimensional nature of the process and the quantum nature of tunneling. Cyclic H-bonded systems are typical examples of this, where PT can happen separately via a “stepwise” mechanism or collectively via a “concerted” mechanism. In the first scenario, some protons hop first, typically resulting in metastable intermediate states(ISs) and the reaction pathway passes through multiple transition states. Whilst in the concerted mechanism, all protons move simultaneously, resulting in only one barrier along the path. Here, we review previous experimental and theoretical studies probing quantum tunneling in several representative systems for cyclic PT, with more focus on recent theoretical findings with path-integral based methods. For gas-phase porphyrin and porphycene, as well as porphycene on a metal surface, theoretical predictions are consistent with experimental observations, and enhance our understanding of the processes. Yet, discrepancies in the PT kinetic isotope effects between experiment and theory appear in two systems,most noticeably in water tetramer adsorbed on NaCl(001) surface, and also hinted in porphycene adsorbed on Ag(110)surface. In ice Ih, controversy surrounding concerted PT remains even between experiments. Despite of the recent progress in both theoretical methods and experimental techniques, multiple PT processes in cyclic H-bonded systems remain to be mysterious.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2020YFF01014706 and 2017YFC0601901)the National Natural Science Foundation of China (Grant Nos.61571019 and 52177026)。
文摘Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12174037,12204061,12204030,and 62375003)the Fundamental Research Funds for the Central Universities,China(Grant No.2022XD-A09)the Fund from the State Key Laboratory of Information Photonics and Optical Communication,China(Grant No.IPOC2021ZZ02)。
文摘With the rapid development of information and communication technology,a key objective in the field of optoelectronic integrated devices is to reduce the nano-laser size and energy consumption.Photonics nanolasers are unable to exceed the diffraction limit and typically exhibit low modulation rates of several GHz.In contrast,plasmonic nanolaser utilizes highly confined surface plasmon polariton(SPP)mode that can exceed diffraction limit and their strong Purcell effect can accelerate the modulation rates to several THz.Herein,we propose a parametrically tunable artificial plasmonic nanolasers based on metal–insulator–semiconductor–insulator–metal(MISIM)structure,which demonstrates its ability to compress the mode field volume toλ/14.As the pump power increases,the proposed artificial plasmonic nanolaser exhibits 20-nm-wide output spectrum.Additionally,we investigate the effects of various cavity parameters on the nanolaser’s output threshold,offering potentials for realizing low-threshold artificial plasmonic nanolasers.Moreover,we observe a blue shift in the center wavelength of the nanolaser output with thinner gain layer thickness,predominantly attributed to the increased exciton–photon coupling strength.Our work brings inspiration to several areas,including spaser-based interconnects,nano-LEDs,spontaneous emission control,miniaturization of photon condensates,eigenmode engineering of plasmonic nanolasers,and optimal design driven by artificial intelligence(AI).
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030009)the National Key Research and Development Program of China(Grant No.2022YFA1604304)the National Natural Science Foundation of China(Grant No.92250305).
文摘Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.
基金supported by the National Key Research and Development Program of China(2022YFB2803700)the National Natural Science Foundation of China(62235002,62322501,12204021,62105008,62235003,and 62105260)+5 种基金Beijing Municipal Science and Technology Commission(Z221100006722003)Beijing Municipal Natural Science Foundation(Z210004)China Postdoctoral Science Foundation(2021T140004)Major Key Project of PCL,the Natural Science Basic Research Program of Shaanxi Province(2022 JQ-638)Young Talent fund of University Association for Science and Technology in Shaanxi,China(20220135)Young Talent fund of Xi'an Association for science and technology(095920221308).
文摘Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it eliminates inherent bandwidth limitations and meanwhile exhibits the potential to provide unparalleled scalability and flexibility,particularly through integrated photonics.However,by far the on-chip solutions for optical signal processing are often tailored to specific tasks,which lacks versatility across diverse applications.Here,we propose a streamlined chip-level signal processing architecture that integrates different active and passive building blocks in silicon-on-insulator(SOI)platform with a compact and efficient manner.Comprehensive and in-depth analyses for the architecture are conducted at levels of device,system,and application.Accompanied by appropriate configuring schemes,the photonic circuitry supports loading and processing both analog and digital signals simultaneously.Three distinct tasks are facilitated with one single chip across several mainstream fields,spanning optical computing,microwave photonics,and optical communications.Notably,it has demonstrated competitive performance in functions like image processing,spectrum filtering,and electro-optical bandwidth equalization.Boasting high universality and a compact form factor,the proposed architecture is poised to be instrumental for next-generation functional fusion systems.
基金the National Key Research and Development Program of China under Grant No.2018YFB2200403the National Natural Science Foundation of China under Grant Nos.11734001,91950204,92150302.
文摘The basic indexes of all-optical integrated photonic circuits include high-density integration,ultrafast response and ultralow energy consumption.Traditional methods mainly adopt conventional micro/nano-structures.The overall size of the circuit is large,usually reaches hundreds of microns.Besides,it is difficult to balance the ultrafast response and ultra-low energy consumption problem,and the crosstalk between two traditional devices is difficult to overcome.Here,we propose and experimentally demonstrate an approach based on inverse design method to realize a high-density,ultrafast and ultra-low energy consumption integrated photonic circuit with two all-optical switches controlling the input states of an all-optical XOR logic gate.The feature size of the whole circuit is only 2.5μm×7μm,and that of a single device is 2μm×2μm.The distance between two adjacent devices is as small as 1.5μm,within wavelength magnitude scale.Theoretical response time of the circuit is 150 fs,and the threshold energy is within 10 fJ/bit.We have also considered the crosstalk problem.The circuit also realizes a function of identifying two-digit logic signal results.Our work provides a new idea for the design of ultrafast,ultra-low energy consumption all-optical devices and the implementation of high-density photonic integrated circuits.
基金the National Natural Science Foundation of China(91750203 and 91850111)State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences and the High-performance Computing Platform of Peking University.
文摘The rotation control of particles in optical tweezers is often subject to the spin or orbit angular momentum induced optical torque,which is susceptible to the mechanical and morphological properties of individual particle.Here we report on a robust and high-speed rotation control in optical tweezers by using a novel linear polarization synthesis based on optical heterodyne interference between two circularly polarized lights with opposite handedness.The synthesized linear polarization can be rotated in a hopping-free scheme at arbitrary speed determined electronically by the heterodyne frequency between two laser fields.The experimental demonstration of a trapped vaterite particle in water shows that the precisely controlled rotation frequency of 300 Hz can be achieved.The proposed method will find promising applications in optically driven micro-gears,fluidic pumps and rotational micro-rheology.
基金support from the National Natural Science Foundation of China(NSFC)(52163019,22005131,52173169 and U20A20128)support from the Natural Science Foundation of Jiangxi Province(20224ACB214006)。
文摘Although two-dimensional perovskite devices are highly stable,they also lead to a number of challenges.For instance,the introduction of large organic amines makes crystallization process complicated,causing problems such as generally small grain size and blocked charge transfer.In this work,imprint assisted with methylamine acetate were used to improve the morphology of the film,optimize the internal phase distribution,and enhance the charge transfer of the perovskite film.Specifically,imprint promoted the dispersion of spacer cations in the recrystallization process with the assistance of methylamine acetate,thus inhibited the formation of low-n phase induced by the aggregation of spacer cations and facilitated the formation of 3D-like phase.In this case,the corresponding quasi-2D perovskite solar cells delivered improved efficiency and exhibited superior stability.Our work provides an effective strategy to obtain uniform phase distribution for quasi-2D perovskite.
基金funding support of the National Natural Science Foundation of China(Grant Nos.11975035,51731001,11805006,and 11675006)the National Key Research and Development Program of China(Grant Nos.2017YFA0206303 and 2017YFA0403701)。
文摘As the family of magnetic materials is rapidly growing,two-dimensional(2D)van der Waals(vdW)magnets have attracted increasing attention as a platform to explore fundamental physical problems of magnetism and their potential applications.This paper reviews the recent progress on emergent vd W magnetic compounds and their potential applications in devices.First,we summarize the current vd W magnetic materials and their synthetic methods.Then,we focus on their structure and the modulation of magnetic properties by analyzing the representative vd W magnetic materials with different magnetic structures.In addition,we pay attention to the heterostructures of vd W magnetic materials,which are expected to produce revolutionary applications of magnetism-related devices.To motivate the researchers in this area,we finally provide the challenges and outlook on 2D vd W magnetism.
基金supported by the National Key Research and Development Program of China(2018YFA0704401)the Beijing Natural Science Foundation(Z180015)the National Natural Science Foundation of China(61922002 and 91850103).
文摘Owing to weak light-matter interactions in natural materials,it is difficult to dynamically tune and switch emission polariza-tion states of plasmonic emitters(or antennas)at nanometer scales.Here,by using a control laser beam to induce a bubble(n=1.0)in water(n=1.333)to obtain a large index variation as high as|Δn|=0.333,the emission polarization of an ultra-small plasmonic emitter(~0.4λ^(2))is experimentally switched at nanometer scales.The plasmonic emitter consists of two orthogonal subwavelength metallic nanogroove antennas on a metal surface,and the separation of the two anten-nas is only s_(x)=120 nm.The emission polarization state of the plasmonic emitter is related to the phase difference between the emission light from the two antennas.Because of a large refractive index variation(|Δn|=0.333),the phase difference is greatly changed when a microbubble emerges in water under a low-intensity control laser.As a result,the emission polarization of the ultra-small plasmonic emitter is dynamically switched from an elliptical polarization state to a linear polarization state,and the change of the degree of linear polarization is as high asΔγ≈0.66.
基金support from the Natural Science Foundation of China(61975001)National Key R&D Program of China(2018YFB1107205)+1 种基金Beijing Natural Science Foundation(Z190005)the Key R&D Program of Guangdong Province(2018B030329001).
文摘Quantum communications aim to share encryption keys between the transmitters and receivers governed by the laws of quantum mechanics.Integrated quantum photonics offers significant advantages of dense integration,high stability and scalability,which enables a vital platform for the implementation of quantum information processing and quantum communications.This article reviews recent experimental progress and advances in the development of integrated quantum photonic devices and systems for quantum communications and quantum networks.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB2200401)the Major Project of Basic and Applied Basic Research of Guangdong Province,China(Grant No.2020B0301030009)the National Natural Science Foundation of China(Grant Nos.91950111,61521004,and 11527901).
文摘A surrounding electromagnetic environment can engineer spontaneous emissions from quantum emitters through the Purcell effect.For instance,a plasmonic antenna can efficiently confine an electromagnetic field and enhance the fluorescent process.In this study,we demonstrate that a photonic microcavity can modulate plasmon-enhanced fluorescence by engineering the local electromagnetic environment.Consequently,we constructed a plasmon-enhanced emitter(PE-emitter),which comprised a nanorod and a nanodiamond,using the nanomanipulation technique.Furthermore,we controlled a polystyrene sphere approaching the PE-emitter and investigated in situ the associated fluorescent spectrum and lifetime.The emission of PE-emitter can be enhanced resonantly at the photonic modes as compared to that within the free spectral range.The spectral shape modulated by photonic modes is independent of the separation between the PS sphere and PEemitter.The band integral of the fluorescence decay rate can be enhanced or suppressed after the PS sphere couples to the PE-emitters,depending on the coupling strength between the plasmonic antenna and the photonic cavity.These findings can be utilized in sensing and imaging applications.
基金supported by the National Natural Science Foundation of China(91964101,12274002)the Fundamental Research Funds for the Central Universities,the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),the Foundation of He’nan Educational Committee(23A430015)+1 种基金the open research fund of National Center for International Research on Intelligent Nano-Materials and Detection Technology in Environmental Protection(SDGH2106)the High-performance Computing Platform of Peking University and the MatCloud+high throughput materials simulation engine.
文摘Two-dimensional(2D)materials have been recognized as a type of potential channel material to replace silicon in future field-effect transistors(FETs)by the International Technology Roadmap for Semiconductors(ITRS)and its succesor the International Roadmap for Devices and Systems(IRDS)[1−4].Substantial first principle quantum transport simulations have predicted that many 2D transistors,including those with MoS2,WSe2,phosphorene,and Bi2O2Se channels,own excellent device performance and are able to extend Moore’s law down to the sub-10 nm scale[4].
基金the support from the National Natural Science Foundation of China(NSFC)(U20A20128,52163019 and 51963016)the support from the Natural Science Foundation of Jiangxi Province(20224ACB214006 and 20232ACB204005)。
文摘At present,the development of perovskite solar cells(PSCs)is progressing rapidly,but the issue of poor stability remains a significant challenge.Achieving a stable precursor solution is crucial for the large-scale production of high-quality PSC films.In this study,we successfully developed a strategy to improve the long-term stability of the precursor solution and improve device performance by employing 1-n-butyl-3-methylimidazolium di-n-butyl phosphate(BMIMBP)as an anti-aging additive.The BP−component inhibits the reactivity of I−and formamidinium ion through multiple chemical bonds,thereby stabilizing the precursor solution.In addition,the BMIM+component,which contains an amino group,can form two-dimensional perovskite internally,further enhancing the device stability.This strategy provides valuable guidance for achieving long-term stability in solar cells.