In this paper, an objective technique for estimating the tropical cyclone (TC) precipitation from station observations is proposed. Based on a comparison between the Original Objective Method (OOM) and the Expert ...In this paper, an objective technique for estimating the tropical cyclone (TC) precipitation from station observations is proposed. Based on a comparison between the Original Objective Method (OOM) and the Expert Subjective Method (ESM), the Objective Synoptic Analysis Technique (OSAT) for partitioning TC precipitation was developed by analyzing the western North Pacific (WNP) TC historical track and the daily precipitation datasets. Being an objective way of the ESM, OSAT overcomes the main problems in OOM, by changing two fixed parameters in OOM, the thresholds for the distance of the absolute TC precipitation (D0) and the TC size (D1), into variable parameters.Case verification for OSAT was also carried out by applying CMORPH (Climate Prediction Center MORPHing technique) daily precipitation measurements, which is NOAA's combined satellite precipitation measurement system. This indicates that OSAT is capable of distinguishing simultaneous TC precipitation rain-belts from those associated with different TCs or with middle-latitude weather systems.展开更多
Climatic characteristics of China-influencing typhoons (CIT) were analyzed in this paper. Main characteristics include:(1) CIT season is May-November, especially from July to September. (2) Frequency of the CIT shows ...Climatic characteristics of China-influencing typhoons (CIT) were analyzed in this paper. Main characteristics include:(1) CIT season is May-November, especially from July to September. (2) Frequency of the CIT shows a decreasing trend during 1951-2004, especially after the late period of the 1960s. (3) Strong CIT also shows an obvious decreasing trend. Meanwhile, there exist obvious interdecadal variations in the CIT genesis, being more southward and eastward than normal in 1960s-1970s, and more northward and westward than normal in the 1980s. In addition, the interrelations between CIT and its environmental factors show that CIT has close relationships with sea surface temperature and East Asian summer monsoon;the structure of the circulations in frequent CIT years is much different from that in infrequent CIT years.展开更多
The spatio-temporal characteristics of typhoon precipitation over China are analyzed in this study. The results show that typhoon precipitation covers most of central-eastern China. Typhoon precipitation gradually dec...The spatio-temporal characteristics of typhoon precipitation over China are analyzed in this study. The results show that typhoon precipitation covers most of central-eastern China. Typhoon precipitation gradually decreases from the southeastern coastal regions to the northwestern mainland. The maximum annual typhoon precipitation exceeds 700 mm in central-eastern Taiwan and part of Hainan, while the minimum annual typhoon precipitation occurs in parts of Inner Mongolia, Shanxi, Shaanxi and Sichuan, with values less than 10 mm. Generally, typhoons produce precipitation over China during April - December with a peak in August. The annual typhoon precipitation time series for observation stations are examined for long-term trends. The results show that decreasing trends exist in most of the stations from 1957 to 2004 and are statistically significant in parts of Taiwan, Hainan, coastal Southeast China and southern Northeast China. The anomaly of typhoon precipitation mainly results from that of the general circulation over Asia and the Walker Cell circulation over the equatorial central and eastern Pacific. Typhoon torrential rain is one of the extreme rainfall events in the southeastern coastal regions and parts of central mainland. In these regions, torrential rains are mostly caused by typhoons.展开更多
Analysis of the climatic characteristics of the tropical cyclones that affect China yields several interesting features. The frequency of these tropical cyclones tended to decrease from 1951 to 2005, with the lowest f...Analysis of the climatic characteristics of the tropical cyclones that affect China yields several interesting features. The frequency of these tropical cyclones tended to decrease from 1951 to 2005, with the lowest frequency in the past ten years. The decrease in the frequency of super typhoons is particularly significant. The main season of tropical cyclone activities is from May to November, with an active period from July to September. There are three obvious sources of these tropical cyclones and they vary with seasons and decades. Their movement has also changed with seasons. On average, these tropical cyclones affect China for 5.6 months annually and the period of influence decreases in the past decades. An analysis of daily data indicates that the days of typhoon influence are shorter in winter and spring and longer in summer. The frequency of tropical cyclones is the largest over southeastern China, decreasing northwestward. Taiwan is the region that is affected by tropical cyclones most frequently. The average annual precipitation associated with tropical cyclones has also decreased gradually northwestward from southeastern China.展开更多
文摘In this paper, an objective technique for estimating the tropical cyclone (TC) precipitation from station observations is proposed. Based on a comparison between the Original Objective Method (OOM) and the Expert Subjective Method (ESM), the Objective Synoptic Analysis Technique (OSAT) for partitioning TC precipitation was developed by analyzing the western North Pacific (WNP) TC historical track and the daily precipitation datasets. Being an objective way of the ESM, OSAT overcomes the main problems in OOM, by changing two fixed parameters in OOM, the thresholds for the distance of the absolute TC precipitation (D0) and the TC size (D1), into variable parameters.Case verification for OSAT was also carried out by applying CMORPH (Climate Prediction Center MORPHing technique) daily precipitation measurements, which is NOAA's combined satellite precipitation measurement system. This indicates that OSAT is capable of distinguishing simultaneous TC precipitation rain-belts from those associated with different TCs or with middle-latitude weather systems.
基金Natural Science Foundation of China (4037502540775046)+1 种基金Project 973 (2006CB403601)Typhoon Research Foundation of Shanghai
文摘Climatic characteristics of China-influencing typhoons (CIT) were analyzed in this paper. Main characteristics include:(1) CIT season is May-November, especially from July to September. (2) Frequency of the CIT shows a decreasing trend during 1951-2004, especially after the late period of the 1960s. (3) Strong CIT also shows an obvious decreasing trend. Meanwhile, there exist obvious interdecadal variations in the CIT genesis, being more southward and eastward than normal in 1960s-1970s, and more northward and westward than normal in the 1980s. In addition, the interrelations between CIT and its environmental factors show that CIT has close relationships with sea surface temperature and East Asian summer monsoon;the structure of the circulations in frequent CIT years is much different from that in infrequent CIT years.
基金Natural Science Foundation of China (40775046)Project 973 (2006CB403601)Typhoon Research Foundation for Shanghai
文摘The spatio-temporal characteristics of typhoon precipitation over China are analyzed in this study. The results show that typhoon precipitation covers most of central-eastern China. Typhoon precipitation gradually decreases from the southeastern coastal regions to the northwestern mainland. The maximum annual typhoon precipitation exceeds 700 mm in central-eastern Taiwan and part of Hainan, while the minimum annual typhoon precipitation occurs in parts of Inner Mongolia, Shanxi, Shaanxi and Sichuan, with values less than 10 mm. Generally, typhoons produce precipitation over China during April - December with a peak in August. The annual typhoon precipitation time series for observation stations are examined for long-term trends. The results show that decreasing trends exist in most of the stations from 1957 to 2004 and are statistically significant in parts of Taiwan, Hainan, coastal Southeast China and southern Northeast China. The anomaly of typhoon precipitation mainly results from that of the general circulation over Asia and the Walker Cell circulation over the equatorial central and eastern Pacific. Typhoon torrential rain is one of the extreme rainfall events in the southeastern coastal regions and parts of central mainland. In these regions, torrential rains are mostly caused by typhoons.
基金National Natural Science Foundation of China (41005051)Applicability of various multi-model ensemble approaches in seasonal precipitation prediction
文摘Analysis of the climatic characteristics of the tropical cyclones that affect China yields several interesting features. The frequency of these tropical cyclones tended to decrease from 1951 to 2005, with the lowest frequency in the past ten years. The decrease in the frequency of super typhoons is particularly significant. The main season of tropical cyclone activities is from May to November, with an active period from July to September. There are three obvious sources of these tropical cyclones and they vary with seasons and decades. Their movement has also changed with seasons. On average, these tropical cyclones affect China for 5.6 months annually and the period of influence decreases in the past decades. An analysis of daily data indicates that the days of typhoon influence are shorter in winter and spring and longer in summer. The frequency of tropical cyclones is the largest over southeastern China, decreasing northwestward. Taiwan is the region that is affected by tropical cyclones most frequently. The average annual precipitation associated with tropical cyclones has also decreased gradually northwestward from southeastern China.