期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Noncovalent cross-linked engineering hydrogel with low hysteresis and high sensitivity for flexible self-powered electronics
1
作者 Hang Yuan Shaowei Han +5 位作者 Jia Wei Songwei Li Peipei Yang Hao-Yang Mi Chuntai Liu Changyu Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期136-147,共12页
In this study,the hydrogel network was reinforced by covalent-like hydrogen bonding,and the strong binding ability of boron-nitrogen coordination served as the main driving force.Among them,acrylamide(AM)and 3-acrylam... In this study,the hydrogel network was reinforced by covalent-like hydrogen bonding,and the strong binding ability of boron-nitrogen coordination served as the main driving force.Among them,acrylamide(AM)and 3-acrylamidophenylboronic acid(AAPBA)were the main body,and the numerous hydroxyl groups in the trehalose(Treh)molecule and other polymer groups formed strong hydrogen bonding interactions to improve the mechanical properties of the PAM/PAAPBA/Treh(PAAT)hydrogel and ensured the simplicity of the synthesis process.The hydrogel possessed high strain at break(1239%),stress(64.7 kPa),low hysteresis(100%to 500%strain,corresponding to dissipation energy from 1.37 to 7.80 kJ/m^(3)),and outstanding cycling stability(retained more than 90%of maximum stress after 200 ten-sile cycles).By integrating carbon nanotubes(CNTs)into PAAT hydrogel(PAATC),the PAATC hydrogel with excellent strain response performance was successfully constructed.The PAATC conductive hydro-gel exhibited high sensitivity(gauge factor(GF)=10.58 and sensitivity(S)=0.304 kPa^(-1)),wide strain response range(0.5%-1000%),fast response time(450 ms),and short recovery time(350 ms),excellent fatigue resistance,and strain response stability.Furthermore,the PAATC-based triboelectric nanogener-ator(TENG)displayed outstanding energy harvesting performance,which shows its potential for appli-cation in self-powered electronic devices. 展开更多
关键词 Low hysteresis Covalent-like hydrogen bonding Boron-nitrogen coordination Hydrogel sensor Triboelectric nanogenerator
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部