In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are inv...In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are investigated.Some necessary condition and sufficient condition for the convergence of iterative sequences are given respectively.The results thus extend and improve some recent corresponding results.展开更多
In this paper,we investigate the number,location and stability of limit cycles in a class of perturbedpolynomial systems with (2n+1) or (2n+2)-degree by constructing detection function and using qualitativeanalysis.We...In this paper,we investigate the number,location and stability of limit cycles in a class of perturbedpolynomial systems with (2n+1) or (2n+2)-degree by constructing detection function and using qualitativeanalysis.We show that there are at most n limit cycles in the perturbed polynomial system,which is similar tothe result of Perko in [8] by using Melnikov method.For n=2,we establish the general conditions dependingon polynomial's coefficients for the bifurcation,location and stability of limit cycles.The bifurcation parametervalue of limit cycles in [5] is also improved by us.When n=3 the sufficient and necessary conditions for theappearance of 3 limit cycles are given.Two numerical examples for the location and stability of limit cycles areused to demonstrate our theoretical results.展开更多
基金Supported by the National Science Foundation of Yunnan Province(2 0 0 2 A0 0 58M)
文摘In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are investigated.Some necessary condition and sufficient condition for the convergence of iterative sequences are given respectively.The results thus extend and improve some recent corresponding results.
基金Supported by Natural Science Foundation of China (10261008)"Creative Project"(KZCZ2-SW-118) in Chinese Academy of Sciences
文摘In this paper,we investigate the number,location and stability of limit cycles in a class of perturbedpolynomial systems with (2n+1) or (2n+2)-degree by constructing detection function and using qualitativeanalysis.We show that there are at most n limit cycles in the perturbed polynomial system,which is similar tothe result of Perko in [8] by using Melnikov method.For n=2,we establish the general conditions dependingon polynomial's coefficients for the bifurcation,location and stability of limit cycles.The bifurcation parametervalue of limit cycles in [5] is also improved by us.When n=3 the sufficient and necessary conditions for theappearance of 3 limit cycles are given.Two numerical examples for the location and stability of limit cycles areused to demonstrate our theoretical results.