Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on ...Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE).展开更多
The discovery of ferroelectricity in HfO_(2)-based materials with high dielectric constant has inspired tremendous research interest for next-generation electronic devices.Importantly,films structure and strain are ke...The discovery of ferroelectricity in HfO_(2)-based materials with high dielectric constant has inspired tremendous research interest for next-generation electronic devices.Importantly,films structure and strain are key factors in exploration of ferroelectricity in fluorite-type oxide HfO_(2) films.Here we investigate the structures and straininduced ferroelectric transition in different phases of few-layer HfO_(2) films(layer number𝑁=1–5).It is found that HfO_(2) films for all phases are more stable with increasing films thickness.Among them,the Pmn2_(1)(110)-oriented film is most stable,and the films of𝑁=4,5 occur with a𝑃21 ferroelectric transition under tensile strain,resulting in polarization about 11.8μC/cm^(2) along in-plane𝑎-axis.The ferroelectric transition is caused by the strain,which induces the displacement of Hf and O atoms on the surface to non-centrosymmetric positions away from the original paraelectric positions,accompanied by the change of surface Hf–O bond lengths.More importantly,three new stable HfO_(2)2D structures are discovered,together with analyses of computed electronic structures,mechanical,and dielectric properties.This work provides guidance for theoretical and experimental study of the new structures and strain-tuned ferroelectricity in freestanding HfO_(2) films.展开更多
Terahertz(THz)circular dichroism(TCD)spectroscopy is extensively used to examine the chiral properties of biological macromolecules and other materials.The rapid advancements in strong-field THz generation and fieldmo...Terahertz(THz)circular dichroism(TCD)spectroscopy is extensively used to examine the chiral properties of biological macromolecules and other materials.The rapid advancements in strong-field THz generation and fieldmodulated techniques highlights the importance of advancing tunable strong-field TCD spectroscopy technology.In this study,we designed and implemented an integrated strong-field TCD spectroscopy system.By using a tilted-pulse-front technique,we generated linearly polarized strong-field THz radiation and achieved linear-tocircular polarization conversion via a reflective metasurface.The resulting circularly polarized THz radiation exhibited an ellipticity greater than 0.9 in the frequency range of 0.38-0.61 THz,achieving a linear-to-circular conversion efficiency exceeding 90%.Additionally,the peak electric field strength of the circularly polarized THz radiation exceeded 100 kV/cm.The proposed system is expected to be instrumental in investigating the chiral characteristics of materials under strong field conditions and in examining how these characteristics vary under different field conditions.展开更多
Compressing all the energy of a laser pulse into a spatiotemporal focal cube edged by the laser center wavelength will realize the highest intensity of an ultra-intense ultrashort laser,which is called theλ^(3) regim...Compressing all the energy of a laser pulse into a spatiotemporal focal cube edged by the laser center wavelength will realize the highest intensity of an ultra-intense ultrashort laser,which is called theλ^(3) regime or theλ^(3) laser.Herein,we introduced a rotational hyperbolic mirror—an important rotational conic section mirror with two foci—that is used as a secondary focusing mirror after a rotational parabolic mirror to reduce the focal spot size from several wavelengths to a single wavelength by significantly increasing the focusing angular aperture.Compared with the rotational ellipsoidal mirror,the first focal spot with a high intensity,as well as some unwanted strong-field effects,is avoided.The optimal focusing condition of this method is presented and the enhanced tight focusing for a femtosecond petawatt laser and theλ3 laser is numerically simulated,which can enhance the focused intensities of ultra-intense ultrashort lasers for laser physics.展开更多
The protein complex crystallographic beamline BL19U1 at the Shanghai Synchrotron Radiation Facility is one of the five beamlines dedicated to protein sciences operated by National Facility for Protein Science(Shanghai...The protein complex crystallographic beamline BL19U1 at the Shanghai Synchrotron Radiation Facility is one of the five beamlines dedicated to protein sciences operated by National Facility for Protein Science(Shanghai,China).The beamline,which features a small-gap invacuum undulator,has been officially open to users since March 2015.This beamline delivers X-ray in the energy range 7–15 keV.With its high flux,low divergence beam and a large active area detector,BL19U1 is designed for proteins with large molecular weight and large crystallographic unit cell dimensions.Good performance and stable operation of the beamline have allowed the number of Protein Data Bank(PDB)depositions and the number of articles published based on data collected at this beamline to increase steadily.To date,over 300 research groups have collected data at the beamline.More than 600 PDB entries have been deposited at the PDB(www.pdb.org).More than 300 papers have been published that include data collected at the beamline,including 21 research articles published in the top-level journals Cell,Nature,and Science.展开更多
The BL19U2 at the Shanghai Synchrotron Radiation Facility is a small-angle X-ray scattering beamline dedicated to structural studies pertaining to biological macromolecules in solution.The beamline has been officially...The BL19U2 at the Shanghai Synchrotron Radiation Facility is a small-angle X-ray scattering beamline dedicated to structural studies pertaining to biological macromolecules in solution.The beamline has been officially opened to users in March 2015,and since then,a series of technological innovations has been developed to optimize beamline performance,thereby significantly improving the data collection efficiency and broadening the application scope of biological small-angle X-ray scattering.BL19U2 is ideal for the high-throughput screening of weakly scattered proteins,protein assemblies,nucleic acids,inorganic nanomaterials,and organic drug molecules.This paper describes the design and overview of the BL19U2 beamline.Versatile sample environments at the experimental station and some recent scientific highlights are presented.展开更多
Most detectors for nuclear physics experiments are detector arrays composed of numerous units.Testing each detector unit is a major part of the research work on detector arrays.To save time and simplify the research p...Most detectors for nuclear physics experiments are detector arrays composed of numerous units.Testing each detector unit is a major part of the research work on detector arrays.To save time and simplify the research process,a ROOT-based detector test system was designed for detector unit testing.The test system is a general pur-pose and expandable software system that can support most of the hardware devices in the market.Users can easily build a complete detector test system using the required hardware devices.The software is based on the ROOT framework and is operated on the Linux platform.The software of the test system consists of four parts:the controller,data acquisition(DAQ),high-voltage power supply,and online monitoring and analysis.In addition,a user-friendly graphical user interface(GUI)was designed for user convenience.Moreover,the online analysis func-tion of the software can implement automatic peak searching and spectrum fitting for different radioactive sources,and the results under different conditions can be shown automatically.The completion of the test system could greatly simplify the development process of the detector.展开更多
The practical application of lithium-sulfur batteries is severely hampered by the poor conductivity,polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes.Herein,a hierarchi-cally porous three-di...The practical application of lithium-sulfur batteries is severely hampered by the poor conductivity,polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes.Herein,a hierarchi-cally porous three-dimension(3D)carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co-N4 has been deli-cately developed as an advanced sulfur host through a SiO_(2)-mediated zeolitic imidazolate framework-L(ZIF-L)strategy.The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation-delithi-ation process but also endow rich interface with full exposure of Co-N4 active sites to boost the lithium polysulfides adsorption and conversion.Owing to the accelerated kinetics and suppressed shuttle effect,the as-prepared sulfur cathode exhibits a superior electrochemical perfor-mance with a high reversible specific capacity of 695 mAh g^(−1) at 5 C and a low capacity fading rate of 0.053%per cycle over 500 cycles at 1 C.This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li-S batteries.展开更多
The cavity-based X-ray free-electron laser(XFEL)has promise in producing fully coherent pulses with a bandwidth of a few meV and very stable intensity,whereas the currently existing self-amplified spontaneous emission...The cavity-based X-ray free-electron laser(XFEL)has promise in producing fully coherent pulses with a bandwidth of a few meV and very stable intensity,whereas the currently existing self-amplified spontaneous emission(SASE)XFEL is capable of generating ultra-short pulses with chaotic spectra.In general,a cavity-based XFEL can provide a spectral brightness three orders of magnitude higher than that of the SASE mode,thereby opening a new door for cutting-edge scientific research.With the development of superconducting MHz repetition-rate XFEL facilities such as FLASH,European-XFEL,LCLS-II,and SHINE,practical cavity-based XFEL operations are becoming increasingly achievable.In this study,megahertz cavity enhanced X-ray generation(MING)is proposed based on China’s first hard XFEL facility-SHINE,which we refer to as MING@SHINE.展开更多
Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident...Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident x-rays,fewer measurements with sufficient signal-to-noise ratio(SNR)are always anticipated.Available methods based on linear and compressive sensing algorithms cannot meet all the requirements simultaneously.In this paper,a method based on a modified compressive sensing algorithm with conjugate gradient descent method(CGDGI)is developed to solve the problems encountered in available XGI methods.Simulation and experiments demonstrate the practicability of CGDGI-based method for the efficient implementation of XGI.The image reconstruction time of sub-second implicates that the proposed method has the potential for real-time XGI.展开更多
Obesity-induced insulin resistance is the hallmark of metabolic syndrome,and chronic,low-grade tissue inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells.Current...Obesity-induced insulin resistance is the hallmark of metabolic syndrome,and chronic,low-grade tissue inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells.Current therapeutic approaches lack efficacy and immunomodulatory capacity.Thus,a new therapeutic approach is needed to prevent chronic inflammation and alleviate insulin resistance.Here,we synthesized a tetrahedral framework nucleic acid(tFNA)nanoparticle that carried resveratrol(RSV)to inhibit tissue inflammation and improve insulin sensitivity in obese mice.The prepared nanoparticles,namely tFNAs-RSV,possessed the characteristics of simple synthesis,stable properties,good water solubility,and superior biocompatibility.The tFNA-based delivery ameliorated the lability of RSV and enhanced its therapeutic efficacy.In high-fat diet(HFD)-fed mice,the administration of tFNAs-RSV ameliorated insulin resistance by alleviating inflammation status.tFNAs-RSV could reverse M1 phenotype macrophages in tissues to M2 phenotype macrophages.As for adaptive immunity,the prepared nanoparticles could repress the activation of Th1 and Th17 and promote Th2 and Treg,leading to the alleviation of insulin resistance.Furthermore,this study is the first to demonstrate that tFNAs,a nucleic acid material,possess immunomodulatory capacity.Collectively,our findings demonstrate that tFNAs-RSV alleviate insulin resistance and ameliorate inflammation in HFD mice,suggesting that nucleic acid materials or nucleic acid-based delivery systems may be a potential agent for the treatment of insulin resistance and obesity-related metabolic diseases.展开更多
Gene regulatory networks play pivotal roles in our understanding of biological processes/mechanisms at the molecular level.Many studies have developed sample-specific or cell-type-specific gene regulatory networks fro...Gene regulatory networks play pivotal roles in our understanding of biological processes/mechanisms at the molecular level.Many studies have developed sample-specific or cell-type-specific gene regulatory networks from single-cell transcriptomic data based on a large amount of cell samples.Here,we review the state-of-the-art computational algorithms and describe various applications of gene regulatory networks in biological studies.展开更多
Cobalt carbide(Co2C)was considered as potential catalysts available for large-scale industrialization of transforming syngas(H2 and CO)to clean fuels.Herein,we successfully synthesized Co-based catalysts with MnO supp...Cobalt carbide(Co2C)was considered as potential catalysts available for large-scale industrialization of transforming syngas(H2 and CO)to clean fuels.Herein,we successfully synthesized Co-based catalysts with MnO supported,to comprehend the effects of Co2C for Fischer–Tropsch synthesis(FTS)under ambient conditions.The huge variety of product selectivity which was contained by different active sites(Co and Co2C)has been found.Furthermore,density functional theory(DFT)shows that Co2C is efficacious of CO adsorption,whereas is weaker for H adsorption than Co.Combining the advantages of Co and Co2C,the catalyst herein can not only obtain more C5+products but also suppress methane selectivity.It can be a commendable guide for the design of industrial application products in FTS.展开更多
Understanding of the oxygen reduction reaction(ORR)mechanism for single atom catalysts is pivotal for the rational design of non-precious metal cathode materials and the commercialization of fuel cells.Herein,a series...Understanding of the oxygen reduction reaction(ORR)mechanism for single atom catalysts is pivotal for the rational design of non-precious metal cathode materials and the commercialization of fuel cells.Herein,a series of non-precious metal electrocatalysts based on nitrogen-doped bimetallic(Fe and Co)carbide were modeled by density functional theory calculations to predict the corresponding reaction pathways.The study elucidated prior oxygen adsorption on the Fe atom in the dual site and the modifier role of Co atoms to tune the electronic structures of Fe.The reaction activity was highly correlated with the bimetallic center and the coordination environment of the adjacent nitrogen.Interestingly,the preadsorption of*OH resulted in the apparent change of metal atoms'electronic states with the d-band center shifting toward the Fermi level,thereby boosting reaction activity.The result should help promote the fundamental understanding of active sites in ORR catalysts and provide an effective approach to the design of highly efficient ORR catalysts on an atomic scale.展开更多
Perovskite-type mixed protonic-electronic conducting membranes have attracted attention because of their ability to separate and purify hydrogen from a mixture of gases generated by industrial-scale steam reforming ba...Perovskite-type mixed protonic-electronic conducting membranes have attracted attention because of their ability to separate and purify hydrogen from a mixture of gases generated by industrial-scale steam reforming based on an ion diffusion mechanism.Exploring cost-effective membrane materials that can achieve both high H_(2) permeability and strong CO_(2)-tolerant chemical stability has been a major challenge for industrial applications.Herein,we constructed a triple phase(ceramic-metal-ceramic)membrane composed of a perovskite ceramic phase BaZr_(0.1)Ce_(0.7)Y_(0.1)Yb_(0.1)O_(3-δ)(BZCYYb),Ni metal phase and a fluorite ceramic phase CeO_(2).Under H_(2) atmosphere,Ni metal in-situ exsolved from the oxide grains,and decorated the grain surface and boundary,thus the electronic conductivity and hydrogen separation performance can be promoted.The BZCYYbNi-CeO_(2)hybrid membrane achieved an exceptional hydrogen separation performance of 0.53 mL min^(-1)cm^(-2) at 800℃ under a 10 vol% H_(2) atmosphere,surpassing all other perovskite membranes reported to date.Furthermore,the CeO_(2) phase incorporated into the BZCYYb-Ni effectively improved the CO_(2)-tolerant chemical stability.The BZCYYbNi-CeO_(2) membrane exhibited outstanding long-term stability for at least 80 h at 700℃ under 10 vol%CO_(2)-10 vol%H_(2).The success of hybrid membrane construction creates a new direction for simultaneously improving their hydrogen separation performance and CO_(2) resistance stability.展开更多
Oxide-supported copper-containing materials have attracted considerable research attention as promising candidates for acrolein formation.Nevertheless,the elucidation of the structure-performance relationships for the...Oxide-supported copper-containing materials have attracted considerable research attention as promising candidates for acrolein formation.Nevertheless,the elucidation of the structure-performance relationships for these systems remains a scientific challenge.In this work,copper oxide clusters deposited on a high-surface-area silica support were synthesized via a deposition-precipitation approach and exhibited remarkable catalytic reactivity(up to 25.5%conversion and 66.8%selectivity)in the propylene-selective oxidation of acrolein at 300℃.Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy combined with X-ray absorption fine structure measurements of the catalyst before and after the reaction confirmed the transformation of the small-sized copper oxide(CuO)clusters into cuprous oxide(Cu2O)clusters.With the aid of in situ X-ray diffraction and in situ dual beam Fourier transform infrared spectroscopy(DB-FTIR),the allyl intermediate(CH2=CHCH2*)was clearly observed,along with the as-formed Cu2O species.The intermediate can react with oxygen atoms from neighboring Cu2O species to form acrolein during the catalytic process,and the small-sized Cu2O clusters play a crucial role in the generation of acrolein via the selective oxidation of propylene.展开更多
Correction to:Nano‑Micro Lett.(2021)13:86 https://doi.org/10.1007/s40820-021-00614-6 The Nano-Micro Letters(2021)13:86,article by Li et al.,entitled“Tetrahedral Framework Nucleic Acid‐Based Delivery of Resveratrol A...Correction to:Nano‑Micro Lett.(2021)13:86 https://doi.org/10.1007/s40820-021-00614-6 The Nano-Micro Letters(2021)13:86,article by Li et al.,entitled“Tetrahedral Framework Nucleic Acid‐Based Delivery of Resveratrol Alleviates Insulin Resistance:From Innate to Adaptive Immunity”(Nano-Micro Lett.https://doi.org/10.1007/s40820-021-00614-6),was published online 06 March,2020,with errors.展开更多
After reaching a world record of 10 PW,the peak power development of the titanium-sapphire(Ti:sapphire)PW ultraintense lasers has hit a bottleneck,and it seems to be difficult to continue increasing due to the difficu...After reaching a world record of 10 PW,the peak power development of the titanium-sapphire(Ti:sapphire)PW ultraintense lasers has hit a bottleneck,and it seems to be difficult to continue increasing due to the difficulty of manufacturing larger Ti:sapphire crystals and the limitation of parasitic lasing that can consume stored pump energy.Unlike coherent beam combining,coherent Ti:sapphire tiling is a viable solution for expanding Ti:sapphire crystal sizes,truncating transverse amplified spontaneous emission,suppressing parasitic lasing,and,importantly,not requiring complex space-time tiling control.A theoretical analysis of the above features and an experimental demonstration of high-quality laser amplification are reported.The results show that the addition of a 2×2 tiled Ti:sapphire amplifier to today’s 10 PW ultraintense laser is a viable technique to break the 10 PW limit and directly increase the highest peak power recorded by a factor of 4,further approaching the exawatt class.展开更多
The microwave-induced thermoacoustic imaging(TAI)technology has both the advantages of high contrast of microwave imaging and high resolution of ultrasound imaging(UI),so it has carried out exploratory application res...The microwave-induced thermoacoustic imaging(TAI)technology has both the advantages of high contrast of microwave imaging and high resolution of ultrasound imaging(UI),so it has carried out exploratory application research in various areas,such as the early detection of breast tumors and cerebrovascular diseases.However,the microwave generator used in the traditional TAI technology is huge and expensive,and the temporal resolution is also too low due to the single-element scanning mechanism.Thus,it is difficult to meet the needs of clinical applications.In this paper,the iterative process and the analysis of related application scenarios from single-element scanning to portable and array-based TAI,such as the miniaturized microwave generator,handheld antenna,multi-channel data acquisition,and UI/TAIdual-modality imaging,are reviewed,and the future trends of this technology are discussed.This review helps researchers in the field of TAI learn the technological development process and future trends.It also deepens clinicians’understanding of TAI so as to put forward more application requirements.展开更多
The hydrated-proton structure is critical for understanding the proton transport in water.However,whether the hydrated proton adopts Zundel or Eigen structure in solution has been highly debated in the past several de...The hydrated-proton structure is critical for understanding the proton transport in water.However,whether the hydrated proton adopts Zundel or Eigen structure in solution has been highly debated in the past several decades.Current experimental techniques cannot directly visualize the dynamic structures in situ,while the available theoretical results on the infrared(IR)spectrum derived from current configurational models cannot fully reproduce the experimental results and thus are unable to provide their precise structures.In this work,using H5O2^+ as a model,we performed first-principles calculations to demonstrate that both the structural feature and the IR frequency of proton stretching,characteristics to discern the Zundel or Eigen structures,evolve discontinuously with the change of the O–O distance.A simple formula was introduced to discriminate the Zundel,Zundel-like,and Eigen-like structures.This work arouses new perspectives to understand the proton hydration in water.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12174208 and 32227802)National Key Research and Development Program of China(No.2022YFC3400600)+2 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)Fundamental Research Funds for the Central Universities(Nos.2122021337 and 2122021405)the 111 Project(No.B23045).
文摘Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE).
基金supported by the National Key R&D Program of China(Grant No.2023YFB4402600)the National Natural Science Foundation of China(Grant Nos.12074241,11929401,52130204,12311530675,and 52271007)+5 种基金Key Research Project of Zhejiang Lab(Grant No.2021PE0AC02)Science and Technology Commission of Shanghai Municipality(Grant Nos.22XD1400900,20501130600,21JC1402700,and 21JC1402600)supports from the open projects of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials(Anhui University of Technology),Ministry of Education(Grant No.GFST2022KF08)State Key Laboratory of Surface Physics(Fudan University)(Grant No.KF202210)State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences(Grant No.SITP-NLIST-YB-2022-08)the support of China Scholarship Council,and thanks Mr.Xiaowen Shi(from HZWTECH)for helpful discussions.
文摘The discovery of ferroelectricity in HfO_(2)-based materials with high dielectric constant has inspired tremendous research interest for next-generation electronic devices.Importantly,films structure and strain are key factors in exploration of ferroelectricity in fluorite-type oxide HfO_(2) films.Here we investigate the structures and straininduced ferroelectric transition in different phases of few-layer HfO_(2) films(layer number𝑁=1–5).It is found that HfO_(2) films for all phases are more stable with increasing films thickness.Among them,the Pmn2_(1)(110)-oriented film is most stable,and the films of𝑁=4,5 occur with a𝑃21 ferroelectric transition under tensile strain,resulting in polarization about 11.8μC/cm^(2) along in-plane𝑎-axis.The ferroelectric transition is caused by the strain,which induces the displacement of Hf and O atoms on the surface to non-centrosymmetric positions away from the original paraelectric positions,accompanied by the change of surface Hf–O bond lengths.More importantly,three new stable HfO_(2)2D structures are discovered,together with analyses of computed electronic structures,mechanical,and dielectric properties.This work provides guidance for theoretical and experimental study of the new structures and strain-tuned ferroelectricity in freestanding HfO_(2) films.
文摘Terahertz(THz)circular dichroism(TCD)spectroscopy is extensively used to examine the chiral properties of biological macromolecules and other materials.The rapid advancements in strong-field THz generation and fieldmodulated techniques highlights the importance of advancing tunable strong-field TCD spectroscopy technology.In this study,we designed and implemented an integrated strong-field TCD spectroscopy system.By using a tilted-pulse-front technique,we generated linearly polarized strong-field THz radiation and achieved linear-tocircular polarization conversion via a reflective metasurface.The resulting circularly polarized THz radiation exhibited an ellipticity greater than 0.9 in the frequency range of 0.38-0.61 THz,achieving a linear-to-circular conversion efficiency exceeding 90%.Additionally,the peak electric field strength of the circularly polarized THz radiation exceeded 100 kV/cm.The proposed system is expected to be instrumental in investigating the chiral characteristics of materials under strong field conditions and in examining how these characteristics vary under different field conditions.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1604401)the Shanghai Science and Technology Committee Program(Grant Nos.22560780100 and 23560750200)the National Natural Science Foundation of China(Grant No.61925507)。
文摘Compressing all the energy of a laser pulse into a spatiotemporal focal cube edged by the laser center wavelength will realize the highest intensity of an ultra-intense ultrashort laser,which is called theλ^(3) regime or theλ^(3) laser.Herein,we introduced a rotational hyperbolic mirror—an important rotational conic section mirror with two foci—that is used as a secondary focusing mirror after a rotational parabolic mirror to reduce the focal spot size from several wavelengths to a single wavelength by significantly increasing the focusing angular aperture.Compared with the rotational ellipsoidal mirror,the first focal spot with a high intensity,as well as some unwanted strong-field effects,is avoided.The optimal focusing condition of this method is presented and the enhanced tight focusing for a femtosecond petawatt laser and theλ3 laser is numerically simulated,which can enhance the focused intensities of ultra-intense ultrashort lasers for laser physics.
文摘The protein complex crystallographic beamline BL19U1 at the Shanghai Synchrotron Radiation Facility is one of the five beamlines dedicated to protein sciences operated by National Facility for Protein Science(Shanghai,China).The beamline,which features a small-gap invacuum undulator,has been officially open to users since March 2015.This beamline delivers X-ray in the energy range 7–15 keV.With its high flux,low divergence beam and a large active area detector,BL19U1 is designed for proteins with large molecular weight and large crystallographic unit cell dimensions.Good performance and stable operation of the beamline have allowed the number of Protein Data Bank(PDB)depositions and the number of articles published based on data collected at this beamline to increase steadily.To date,over 300 research groups have collected data at the beamline.More than 600 PDB entries have been deposited at the PDB(www.pdb.org).More than 300 papers have been published that include data collected at the beamline,including 21 research articles published in the top-level journals Cell,Nature,and Science.
基金the National Natural Science Foundation of China(Nos.U1832215 and U1832144)the Youth Innovation Promotion Association of Chinese Academy Science(No.2017319).
文摘The BL19U2 at the Shanghai Synchrotron Radiation Facility is a small-angle X-ray scattering beamline dedicated to structural studies pertaining to biological macromolecules in solution.The beamline has been officially opened to users in March 2015,and since then,a series of technological innovations has been developed to optimize beamline performance,thereby significantly improving the data collection efficiency and broadening the application scope of biological small-angle X-ray scattering.BL19U2 is ideal for the high-throughput screening of weakly scattered proteins,protein assemblies,nucleic acids,inorganic nanomaterials,and organic drug molecules.This paper describes the design and overview of the BL19U2 beamline.Versatile sample environments at the experimental station and some recent scientific highlights are presented.
基金This work was supported by the National Natural Science Foundation of China(No.U1732142).
文摘Most detectors for nuclear physics experiments are detector arrays composed of numerous units.Testing each detector unit is a major part of the research work on detector arrays.To save time and simplify the research process,a ROOT-based detector test system was designed for detector unit testing.The test system is a general pur-pose and expandable software system that can support most of the hardware devices in the market.Users can easily build a complete detector test system using the required hardware devices.The software is based on the ROOT framework and is operated on the Linux platform.The software of the test system consists of four parts:the controller,data acquisition(DAQ),high-voltage power supply,and online monitoring and analysis.In addition,a user-friendly graphical user interface(GUI)was designed for user convenience.Moreover,the online analysis func-tion of the software can implement automatic peak searching and spectrum fitting for different radioactive sources,and the results under different conditions can be shown automatically.The completion of the test system could greatly simplify the development process of the detector.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51871060,52071084 and 51831009)Recruit Program of Global Youth Experts and Fudan’s Undergraduate Research Opportunities Program(FDUROP)。
文摘The practical application of lithium-sulfur batteries is severely hampered by the poor conductivity,polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes.Herein,a hierarchi-cally porous three-dimension(3D)carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co-N4 has been deli-cately developed as an advanced sulfur host through a SiO_(2)-mediated zeolitic imidazolate framework-L(ZIF-L)strategy.The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation-delithi-ation process but also endow rich interface with full exposure of Co-N4 active sites to boost the lithium polysulfides adsorption and conversion.Owing to the accelerated kinetics and suppressed shuttle effect,the as-prepared sulfur cathode exhibits a superior electrochemical perfor-mance with a high reversible specific capacity of 695 mAh g^(−1) at 5 C and a low capacity fading rate of 0.053%per cycle over 500 cycles at 1 C.This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li-S batteries.
基金supported by the CAS Project for Young Scientists in Basic Research(No.YSBR-042)the National Natural Science Foundation of China(Nos.12125508,11935020)+1 种基金Program of Shanghai Academic/Technology Research Leader(No.21XD1404100)Shanghai Pilot Program for Basic Research–Chinese Academy of Science,Shanghai Branch(No.JCYJSHFY-2021-010).
文摘The cavity-based X-ray free-electron laser(XFEL)has promise in producing fully coherent pulses with a bandwidth of a few meV and very stable intensity,whereas the currently existing self-amplified spontaneous emission(SASE)XFEL is capable of generating ultra-short pulses with chaotic spectra.In general,a cavity-based XFEL can provide a spectral brightness three orders of magnitude higher than that of the SASE mode,thereby opening a new door for cutting-edge scientific research.With the development of superconducting MHz repetition-rate XFEL facilities such as FLASH,European-XFEL,LCLS-II,and SHINE,practical cavity-based XFEL operations are becoming increasingly achievable.In this study,megahertz cavity enhanced X-ray generation(MING)is proposed based on China’s first hard XFEL facility-SHINE,which we refer to as MING@SHINE.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0206004,2017YFA0206002,2018YFC0206002,and 2017YFA0403801)National Natural Science Foundation of China(Grant No.81430087)。
文摘Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident x-rays,fewer measurements with sufficient signal-to-noise ratio(SNR)are always anticipated.Available methods based on linear and compressive sensing algorithms cannot meet all the requirements simultaneously.In this paper,a method based on a modified compressive sensing algorithm with conjugate gradient descent method(CGDGI)is developed to solve the problems encountered in available XGI methods.Simulation and experiments demonstrate the practicability of CGDGI-based method for the efficient implementation of XGI.The image reconstruction time of sub-second implicates that the proposed method has the potential for real-time XGI.
基金National Key R&D Program of China(2019YFA0110600)National Natural Science Foundation of China(81970916,81671031)the LU JIAXI International team program supported by the K.C.Wong Education Foundation and CAS and the Youth Innovation Promotion Association of CAS(Grant No.2016236).
文摘Obesity-induced insulin resistance is the hallmark of metabolic syndrome,and chronic,low-grade tissue inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells.Current therapeutic approaches lack efficacy and immunomodulatory capacity.Thus,a new therapeutic approach is needed to prevent chronic inflammation and alleviate insulin resistance.Here,we synthesized a tetrahedral framework nucleic acid(tFNA)nanoparticle that carried resveratrol(RSV)to inhibit tissue inflammation and improve insulin sensitivity in obese mice.The prepared nanoparticles,namely tFNAs-RSV,possessed the characteristics of simple synthesis,stable properties,good water solubility,and superior biocompatibility.The tFNA-based delivery ameliorated the lability of RSV and enhanced its therapeutic efficacy.In high-fat diet(HFD)-fed mice,the administration of tFNAs-RSV ameliorated insulin resistance by alleviating inflammation status.tFNAs-RSV could reverse M1 phenotype macrophages in tissues to M2 phenotype macrophages.As for adaptive immunity,the prepared nanoparticles could repress the activation of Th1 and Th17 and promote Th2 and Treg,leading to the alleviation of insulin resistance.Furthermore,this study is the first to demonstrate that tFNAs,a nucleic acid material,possess immunomodulatory capacity.Collectively,our findings demonstrate that tFNAs-RSV alleviate insulin resistance and ameliorate inflammation in HFD mice,suggesting that nucleic acid materials or nucleic acid-based delivery systems may be a potential agent for the treatment of insulin resistance and obesity-related metabolic diseases.
基金supported by the National Key Research and Development Program of China(2017YFA0505500)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB38040400)+1 种基金National Science Foundation of China(31771476 and 31930022)Shanghai Municipal Science and Technology Major Project(2017SHZDZX01)。
文摘Gene regulatory networks play pivotal roles in our understanding of biological processes/mechanisms at the molecular level.Many studies have developed sample-specific or cell-type-specific gene regulatory networks from single-cell transcriptomic data based on a large amount of cell samples.Here,we review the state-of-the-art computational algorithms and describe various applications of gene regulatory networks in biological studies.
基金supported from the National Natural Science Foundation of China,Grant/Award Number:U1732267,21503218.
文摘Cobalt carbide(Co2C)was considered as potential catalysts available for large-scale industrialization of transforming syngas(H2 and CO)to clean fuels.Herein,we successfully synthesized Co-based catalysts with MnO supported,to comprehend the effects of Co2C for Fischer–Tropsch synthesis(FTS)under ambient conditions.The huge variety of product selectivity which was contained by different active sites(Co and Co2C)has been found.Furthermore,density functional theory(DFT)shows that Co2C is efficacious of CO adsorption,whereas is weaker for H adsorption than Co.Combining the advantages of Co and Co2C,the catalyst herein can not only obtain more C5+products but also suppress methane selectivity.It can be a commendable guide for the design of industrial application products in FTS.
基金the Joint Fund of the National Natural Science Foundation of China(U1732267).
文摘Understanding of the oxygen reduction reaction(ORR)mechanism for single atom catalysts is pivotal for the rational design of non-precious metal cathode materials and the commercialization of fuel cells.Herein,a series of non-precious metal electrocatalysts based on nitrogen-doped bimetallic(Fe and Co)carbide were modeled by density functional theory calculations to predict the corresponding reaction pathways.The study elucidated prior oxygen adsorption on the Fe atom in the dual site and the modifier role of Co atoms to tune the electronic structures of Fe.The reaction activity was highly correlated with the bimetallic center and the coordination environment of the adjacent nitrogen.Interestingly,the preadsorption of*OH resulted in the apparent change of metal atoms'electronic states with the d-band center shifting toward the Fermi level,thereby boosting reaction activity.The result should help promote the fundamental understanding of active sites in ORR catalysts and provide an effective approach to the design of highly efficient ORR catalysts on an atomic scale.
基金financially supported by the National Key R&D Program of China(2021YFA1502400)the"Transformational Technologies for Clean Energy and Demonstration"+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA2100000)the National Natural Science Foundation of China(52172005,21905295,22179141)the DNL Cooperation Fund,CAS(DNL202008)the Photon Science Center for Carbon Neutrality and the Major Scientific and Technological Innovation Project of Shandong Province(2020CXGC010402)。
文摘Perovskite-type mixed protonic-electronic conducting membranes have attracted attention because of their ability to separate and purify hydrogen from a mixture of gases generated by industrial-scale steam reforming based on an ion diffusion mechanism.Exploring cost-effective membrane materials that can achieve both high H_(2) permeability and strong CO_(2)-tolerant chemical stability has been a major challenge for industrial applications.Herein,we constructed a triple phase(ceramic-metal-ceramic)membrane composed of a perovskite ceramic phase BaZr_(0.1)Ce_(0.7)Y_(0.1)Yb_(0.1)O_(3-δ)(BZCYYb),Ni metal phase and a fluorite ceramic phase CeO_(2).Under H_(2) atmosphere,Ni metal in-situ exsolved from the oxide grains,and decorated the grain surface and boundary,thus the electronic conductivity and hydrogen separation performance can be promoted.The BZCYYbNi-CeO_(2)hybrid membrane achieved an exceptional hydrogen separation performance of 0.53 mL min^(-1)cm^(-2) at 800℃ under a 10 vol% H_(2) atmosphere,surpassing all other perovskite membranes reported to date.Furthermore,the CeO_(2) phase incorporated into the BZCYYb-Ni effectively improved the CO_(2)-tolerant chemical stability.The BZCYYbNi-CeO_(2) membrane exhibited outstanding long-term stability for at least 80 h at 700℃ under 10 vol%CO_(2)-10 vol%H_(2).The success of hybrid membrane construction creates a new direction for simultaneously improving their hydrogen separation performance and CO_(2) resistance stability.
文摘Oxide-supported copper-containing materials have attracted considerable research attention as promising candidates for acrolein formation.Nevertheless,the elucidation of the structure-performance relationships for these systems remains a scientific challenge.In this work,copper oxide clusters deposited on a high-surface-area silica support were synthesized via a deposition-precipitation approach and exhibited remarkable catalytic reactivity(up to 25.5%conversion and 66.8%selectivity)in the propylene-selective oxidation of acrolein at 300℃.Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy combined with X-ray absorption fine structure measurements of the catalyst before and after the reaction confirmed the transformation of the small-sized copper oxide(CuO)clusters into cuprous oxide(Cu2O)clusters.With the aid of in situ X-ray diffraction and in situ dual beam Fourier transform infrared spectroscopy(DB-FTIR),the allyl intermediate(CH2=CHCH2*)was clearly observed,along with the as-formed Cu2O species.The intermediate can react with oxygen atoms from neighboring Cu2O species to form acrolein during the catalytic process,and the small-sized Cu2O clusters play a crucial role in the generation of acrolein via the selective oxidation of propylene.
文摘Correction to:Nano‑Micro Lett.(2021)13:86 https://doi.org/10.1007/s40820-021-00614-6 The Nano-Micro Letters(2021)13:86,article by Li et al.,entitled“Tetrahedral Framework Nucleic Acid‐Based Delivery of Resveratrol Alleviates Insulin Resistance:From Innate to Adaptive Immunity”(Nano-Micro Lett.https://doi.org/10.1007/s40820-021-00614-6),was published online 06 March,2020,with errors.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1604401)the Shanghai Science and Technology Committee Program(Grant Nos.22560780100 and 23560750200)the National Natural Science Foundation of China(Grant No.61925507).
文摘After reaching a world record of 10 PW,the peak power development of the titanium-sapphire(Ti:sapphire)PW ultraintense lasers has hit a bottleneck,and it seems to be difficult to continue increasing due to the difficulty of manufacturing larger Ti:sapphire crystals and the limitation of parasitic lasing that can consume stored pump energy.Unlike coherent beam combining,coherent Ti:sapphire tiling is a viable solution for expanding Ti:sapphire crystal sizes,truncating transverse amplified spontaneous emission,suppressing parasitic lasing,and,importantly,not requiring complex space-time tiling control.A theoretical analysis of the above features and an experimental demonstration of high-quality laser amplification are reported.The results show that the addition of a 2×2 tiled Ti:sapphire amplifier to today’s 10 PW ultraintense laser is a viable technique to break the 10 PW limit and directly increase the highest peak power recorded by a factor of 4,further approaching the exawatt class.
基金supported in part by the National Key Research and Development Program of China under Grant No.2018YFB1801503National Natural Science Foundation of China under Grants No.61931006,No.82071940,No.62101111,No.U20A20212,No.61921002,and No.U1930127+1 种基金Fundamental Research Funds for the Central Universities under Grants No.ZYGX2020ZB011 and No.ZYGX2019J013Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China under Grants No.ZYGX2021YGLH205 and No.ZYGX2021YGLH216.
文摘The microwave-induced thermoacoustic imaging(TAI)technology has both the advantages of high contrast of microwave imaging and high resolution of ultrasound imaging(UI),so it has carried out exploratory application research in various areas,such as the early detection of breast tumors and cerebrovascular diseases.However,the microwave generator used in the traditional TAI technology is huge and expensive,and the temporal resolution is also too low due to the single-element scanning mechanism.Thus,it is difficult to meet the needs of clinical applications.In this paper,the iterative process and the analysis of related application scenarios from single-element scanning to portable and array-based TAI,such as the miniaturized microwave generator,handheld antenna,multi-channel data acquisition,and UI/TAIdual-modality imaging,are reviewed,and the future trends of this technology are discussed.This review helps researchers in the field of TAI learn the technological development process and future trends.It also deepens clinicians’understanding of TAI so as to put forward more application requirements.
基金the National Natural Science Foundation of China(Grant No.21773287).
文摘The hydrated-proton structure is critical for understanding the proton transport in water.However,whether the hydrated proton adopts Zundel or Eigen structure in solution has been highly debated in the past several decades.Current experimental techniques cannot directly visualize the dynamic structures in situ,while the available theoretical results on the infrared(IR)spectrum derived from current configurational models cannot fully reproduce the experimental results and thus are unable to provide their precise structures.In this work,using H5O2^+ as a model,we performed first-principles calculations to demonstrate that both the structural feature and the IR frequency of proton stretching,characteristics to discern the Zundel or Eigen structures,evolve discontinuously with the change of the O–O distance.A simple formula was introduced to discriminate the Zundel,Zundel-like,and Eigen-like structures.This work arouses new perspectives to understand the proton hydration in water.