MXene,the two-dimensional transition metal carbide or nitride material,was first discovered in 2011.They possess superior characteristics such as stability,electric conductivity,and electrochemical properties,that mak...MXene,the two-dimensional transition metal carbide or nitride material,was first discovered in 2011.They possess superior characteristics such as stability,electric conductivity,and electrochemical properties,that make them attract the attention of the energy engineering field.Overall water splitting which generates hydrogen and oxygen,not only serves as a clean energy supply technology but also demonstrates the capacity for redistribution and integration of renewable energy.MXene based non-noble metal has demonstrated significant potential in terms of cost-effectiveness.Therefore,the current focus is implementing targeted regulation at the micro level to render it effective comparable to the precious metals.In this context,the mechanisms of the hydrogen evolution reaction(HER) and the oxygen evolution reaction(OER) under the influence of MXene can be elucidated in terms of electron and ion transfer processes,hydrogen coverage,and regulation of terminal groups.Certainly,the composition,structure,synthesis,and stability strategies of MXene are the subjects of comprehensive investigation from both theoretical calculations using density functional theory(DFT) and experimental perspectives.In addition,this review provides a comprehensive summary of MXene based non-noble metal and various modification methods.These methods encompass doping,vacancy engineering,hybrid structures,heterojunction formation,multi-scale engineering,surface engineering,and phase engineering.The review also presents suggestions for designing high-performance MXene based on non-noble metals.It offers guidance on employing construction strategies for electrocatalysts.By leveraging the unique properties and tunability of MXene and implementing these modification methods,researchers can enhance the catalytic activity,stability,selectivity,and efficiency of MXene based non-noble metal catalysts.展开更多
The reaction between high purity nickel (99.999%) and high purity tin (99.999%) was investigated in the temperature range of 232℃ - 330℃, at short periods of annealing (1 - 60 s). The reaction kinetic was studied us...The reaction between high purity nickel (99.999%) and high purity tin (99.999%) was investigated in the temperature range of 232℃ - 330℃, at short periods of annealing (1 - 60 s). The reaction kinetic was studied using cross-sectional scanning electron microscope (SEM) images. The intermetallic compound (IMC) growth was analyzed using the empirical power law and a time dependence in the range of 0.26 to 0.33 was found. The morphology of the IMC was investigated by SEM in the temperature range of 235℃ - 290℃, at annealing periods of 10 s, 30 s, and 60 s by selectively etching away the remaining elementary tin. The exposed IMC displays a change in morphology with increasing annealing temperature, demonstrating that the growth velocity of certain crystallographic orientations of the IMC is strongly influenced by the annealing temperature. Additionally, coarsening and crumbling of the IMC grains is observed, and will be discussed with respect to the responsible mechanisms.展开更多
In this investigation, the influence of a thin gold (Au) layer on the growth behavior of the intermetallic compound (IMC) in a Nickel-Tin-Solder (NiSn-Solder) was studied. The reaction kinetics was studied in the temp...In this investigation, the influence of a thin gold (Au) layer on the growth behavior of the intermetallic compound (IMC) in a Nickel-Tin-Solder (NiSn-Solder) was studied. The reaction kinetics was studied in the temperature range of 232℃ to 330℃ using cross-sectional scanning electron microscope (SEM) images. The kinetics of the reaction was determined using the empirical power law and the research showed that the introduction of an Au layer changes the reaction kinetics of the solder significantly. Furthermore, the change in reaction kinetics was accompanied by a change in morphology of the developing grains. The grain morphology of the IMC was studied for samples annealed at 290℃using cross-sectional and top-view samples and compared to Au free NiSn-Solder.展开更多
Growth depression of Rosa plants at sites previously used to cultivate the same or closely related species is a typical symptom of rose replant disease(RRD).Currently,limited information is available on the causes and...Growth depression of Rosa plants at sites previously used to cultivate the same or closely related species is a typical symptom of rose replant disease(RRD).Currently,limited information is available on the causes and the etiology of RRD compared to apple replant disease(ARD).Thus,this study aimed at analyzing growth characteristics,root morphology,and root metabolites,as well as microbial communities in the rhizosphere of the susceptible rootstock Rosa corymbifera‘Laxa’grown in RRD-affected soil from two sites(Heidgraben and Sangerhausen),either untreated or disinfected byγ-irradiation.In a greenhouse bioassay,plants developed significantly more biomass in theγ-irradiated than in the untreated soils of both sites.Several plant metabolites detected in R.corymbifera‘Laxa’roots were site-and treatment-dependent.Although aloesin was recorded in significantly higher concentrations in untreated than inγ-irradiated soils from Heidgraben,the concentrations of phenylalanine were significantly lower in roots from untreated soil of both sites.Rhizosphere microbial communities of 8-week-old plants were studied by sequencing of 16S rRNA,ITS,and cox gene fragments amplified from total community DNA.Supported by microscopic observations,sequences affiliated to the bacterial genus Streptomyces and the fungal genus Nectria were identified as potential causal agents of RRD in the soils investigated.The relative abundance of oomycetes belonging to the genus Pythiogeton showed a negative correlation to the growth of the plants.Overall,the RRD symptoms,the effects of soil treatments on the composition of the rhizosphere microbial community revealed striking similarities to findings related to ARD.展开更多
The major issues concerning water development and management include water conservation and the efficiency of water use, cost recovery, social and environmental factors. So continuous monitoring is essential to evalua...The major issues concerning water development and management include water conservation and the efficiency of water use, cost recovery, social and environmental factors. So continuous monitoring is essential to evaluate the reclamation impacts on the groundwater potentiality such as Esna Area. The main objective of this work is to determine the new development areas in Esna during the period from 1984 to 2011 using remote sensing technique. The impacts of the present and future development have been evaluated by using the two-dimensional numerical groundwater flow Simulation Package (visual modflow 4.2). The package is used to construct and calibrate a numerical model that can be used to simulate the response of the aquifer in the study area under implementing different management alternatives in the form of changes in piezometric levels and salinity. From land use maps of the study area in the year 2011, a lot of changes in development areas especially out the border of the old land were observed. The change in land reclaimed area was estimated with 44% in the period from year 1984 to 2011. This development accompanied with draw down about 2.5 meters through this period of time. The authors recommend applying different kinds of change detection technique on the study area. Comparing between results, continuous monitoring of the development area is highly recommended.展开更多
Gold complexes have emerged as promising anticancer metallodrugs due to their efficient thioredoxin reductase(TrxR)inhibition,which disturbs the redox balance of cancer cells.However,in this model,the role of the liga...Gold complexes have emerged as promising anticancer metallodrugs due to their efficient thioredoxin reductase(TrxR)inhibition,which disturbs the redox balance of cancer cells.However,in this model,the role of the ligand(s)coordinated to gold is often overlooked.In this work,we present a series of tetrapyridyl Au(Ⅲ)complexes that exhibit thiol-induced release of a Au(Ⅰ)ion and a tetrapyridyl ligand.The formation of a free Au(Ⅰ)center is responsible for the expected TrxR inhibition.Additionally,the released ligand,which was visible in cells due to its intense blue fluorescence,showed excellent binding properties to the hERG potassium channel.Moreover,these ligands ended up in the lysosomes,resulting in significant lysosome damage.Altogether,the Au(Ⅲ)complexes presented in this work showed broad-spectrum anticancer properties,both in hypoxic 2D monolayers and 3D tumor spheroids.We suggest that the interaction of the released Au(Ⅰ)center and the tetrapyridyl ligand with two different protein targets may combine into prodrugs that overcome hypoxia-induced drug deactivation.展开更多
The great diversity of dedicated hybrid transmissions(DHTs)requires a method to identify solutions among all potential concepts involved in each structure.Therefore,a DHT synthesis tool is developed on the basis of ge...The great diversity of dedicated hybrid transmissions(DHTs)requires a method to identify solutions among all potential concepts involved in each structure.Therefore,a DHT synthesis tool is developed on the basis of general transmission synthesis.In the first synthesis step,transmission structures are generated with only conventional functions such as driving with only the internal combustion engine.Electric machines are then installed in the transmissions to achieve further hybrid functions,including boosting,eCVT and electric driving modes.The number of generated transmission concepts increases exponentially with each synthesis step.Various evaluations are carried out successively to identify the most suitable DHT concepts among the many possible solutions.The generated DHT concepts are evaluated in terms of structural feasibility,driving modes,drivability and load factors on transmission components.An example of DHT synthesis involving planetary gear sets is explained in detail.The best five DHT structures are identified out of more than 120 billion solutions.展开更多
The integration of one or more electricmachines into the drivetrain has resulted inmany different powertrain concepts in recent years,ranging from the P2 hybrid to dedicated hybrid transmission(DHT).Two types of DHT w...The integration of one or more electricmachines into the drivetrain has resulted inmany different powertrain concepts in recent years,ranging from the P2 hybrid to dedicated hybrid transmission(DHT).Two types of DHT with different characteristics are investigated.The first type is the power split hybrid(PS-DHT),which has very low mechanical complexity but needs high electrical effort in the transmission.The second type is multi-mode DHT(MM-DHT),which has a slightly higher mechanical complexity but much less electrical effort when compared with the PS-DHT.A transmission synthesis is used to determine the concept of the MM-DHT.The three different powertrain concepts(i.e.,P2,PS-DHT,and MM-DHT)are analyzed and evaluated regarding fuel economy and performance.Legal driving cycles(e.g.,Worldwide Harmonized Light vehicles Test Procedure)and the 3D method(driver,driven vehicle,driving environs)are used to investigate the drivetrain in the context of real driving operation.Results show that the two DHT concepts offer better fuel economy than the P2 hybrid drivetrain while still providing the same or even better driving performance.The study also shows that new hybrid concepts created with transmission synthesis can lead to further improvements in hybrid powertrains.展开更多
An ever-increasing number of intracellular multi-protein networks have been identified in plant cells.Split-GFP-based protein–protein interaction assays combine the advantages of in vivo interaction studies in a nati...An ever-increasing number of intracellular multi-protein networks have been identified in plant cells.Split-GFP-based protein–protein interaction assays combine the advantages of in vivo interaction studies in a native environment with additional visualization of protein complex localization.Because of their simple protocols,they have become some of the most frequently used methods.However,standard fluorescent proteins present several drawbacks for sophisticated microscopy.With the HaloTag system,these drawbacks can be overcome,as this reporter forms covalent irreversible bonds with synthetic photostable fluorescent ligands.Dyes can be used in adjustable concentrations and are suitable for advanced microscopy methods.Therefore,we have established the Split-HaloTag imaging assay in plants,which is based on the reconstitution of a functional HaloTag protein upon protein–protein interaction and the subsequent covalent binding of an added fluorescent ligand.Its suitability and robustness were demonstrated using a well-characterized interaction as an example of protein–protein interaction at cellular structures:the anchoring of the molybdenumcofactor biosynthesis complex to filamentous actin.In addition,a specific interactionwas visualized in a more distinctivemannerwith subdiffractional polarizationmicroscopy,Airyscan,and structured illumination microscopy to provide examples of sophisticated imaging.Split-GFPand Split-HaloTag can complement one another,as Split-HaloTag represents an alternative option and an addition to the large toolbox of in vivo methods.Therefore,this promising new Split-HaloTag imaging assay provides a unique and sensitive approach formore detailed characterization of protein–protein interactions using specific microscopy techniques,such as 3D imaging,single-molecule tracking,and super-resolution microscopy.展开更多
Near-field holography(NFH), with its virtues of precise critical dimensions and high throughput, has a great potential for the realization of soft x-ray diffraction gratings. We show that NFH with reflections reduce...Near-field holography(NFH), with its virtues of precise critical dimensions and high throughput, has a great potential for the realization of soft x-ray diffraction gratings. We show that NFH with reflections reduced by the integration of antireflective coatings(ARCs) simplifies the NFH process relative to that of setups using refractive index liquids. Based on the proposed NFH with ARCs, gold-coated laminar gratings were fabricated using NFH and subsequent ion beam etching. The efficiency angular spectrum shows that the stray light of the gratings is reduced one level of magnitude by the suppression of interface reflections during NFH.展开更多
The calibration of conventional,hybrid and electric drivetrains is an important process during the development phase of any vehicle.Therefore,to optimize the comfort and dynamic behavior(known as driveability),many te...The calibration of conventional,hybrid and electric drivetrains is an important process during the development phase of any vehicle.Therefore,to optimize the comfort and dynamic behavior(known as driveability),many test drives are performed by experienced drivers during different driving maneuvers,e.g.,launch,re-launch or gear shift.However,the process can be kept more consistent and independent of human-based deviations by using objective ratings.This study first introduces an objective rating system developed for the launch behavior of conventional vehicles with automatic transmission,dual-clutch transmission,and alternative drivetrains.Then,the launch behavior,namely comfort and dynamic quality,is compared between two conventional vehicles,a plug-in hybrid electric vehicle and a battery electric vehicle.Results show the benefits of pure electric drivetrains due to the lack of launch and shifting elements,as well as the usage of a highly dynamic electric motor.While the plug-in hybrid achieves a 10%higher overall rating compared to the baseline conventional vehicle,the pure electric vehicle even achieves a 21%higher overall rating.The results also highlight the optimization potential of battery electric vehicles regarding their comfort and dynamic characteristics.The transitions and the gradient of the acceleration build-up have a major influence on the launch quality.展开更多
The integration of gallium nitride(GaN)nanowire light-emitting diodes(nanoLEDs)on flexible substrates offers opportunities for applications beyond rigid solid-state lighting(e.g.,for wearable optoelectronics and benda...The integration of gallium nitride(GaN)nanowire light-emitting diodes(nanoLEDs)on flexible substrates offers opportunities for applications beyond rigid solid-state lighting(e.g.,for wearable optoelectronics and bendable inorganic displays).Here,we report on a fast physical transfer route based on femtosecond laser lift-off(fs-LLO)to realize wafer-scale top–down GaN nanoLED arrays on unconventional platforms.Combined with photolithography and hybrid etching processes,we successfully transferred GaN blue nanoLEDs from a full two-inch sapphire substrate onto a flexible copper(Cu)foil with a high nanowire density(~107 wires/cm2),transfer yield(~99.5%),and reproducibility.Various nanoanalytical measurements were conducted to evaluate the performance and limitations of the fs-LLO technique as well as to gain insights into physical material properties such as strain relaxation and assess the maturity of the transfer process.This work could enable the easy recycling of native growth substrates and inspire the development of large-scale hybrid GaN nanowire optoelectronic devices by solely employing standard epitaxial LED wafers(i.e.,customized LED wafers with additional embedded sacrificial materials and a complicated growth process are not required).展开更多
Xylariomycetidae(Ascomycota)is a highly diversified group with variable stromatic characters.Our research focused on inconspicuous stromatic xylarialean taxa from China,Italy,Russia,Thailand and the United Kingdom.Det...Xylariomycetidae(Ascomycota)is a highly diversified group with variable stromatic characters.Our research focused on inconspicuous stromatic xylarialean taxa from China,Italy,Russia,Thailand and the United Kingdom.Detailed morpho-logical descriptions,illustrations and combined ITS-LSU-rpb2-tub2-tef1 phylogenies revealed 39 taxa from our collections belonging to Amphisphaeriales and Xylariales.A new family(Appendicosporaceae),five new genera(Magnostiolata,Mela-nostictus,Neoamphisphaeria,Nigropunctata and Paravamsapriya),27 new species(Acrocordiella photiniicola,Allocryp-tovalsa sichuanensis,Amphisphaeria parvispora,Anthostomella lamiacearum,Apiospora guiyangensis,A.sichuanensis,Biscogniauxia magna,Eutypa camelliae,Helicogermslita clypeata,Hypocopra zeae,Magnostiolata mucida,Melanostictus longiostiolatus,M.thailandicus,Nemania longipedicellata,N.delonicis,N.paraphysata,N.thailandensis,Neoamphispha-eria hyalinospora,Neoanthostomella bambusicola,Nigropunctata bambusicola,N.nigrocircularis,N.thailandica,Occul-titheca rosae,Paravamsapriya ostiolata,Peroneutypa leucaenae,Seiridium italicum and Vamsapriya mucosa)and seven new host/geographical records are introduced and reported.Divergence time estimates indicate that Delonicicolales diverged from Amphisphaeriales+Xylariales at 161(123-197)MYA.Amphisphaeriales and Xylariales diverged 154(117-190)MYA with a crown age of 127(92-165)MYA and 147(111-184)MYA,respectively.Appendicosporaceae(Amphisphaeriales)has a stem age of 89(65-117)MYA.Ancestral character state reconstruction indicates that astromatic,clypeate ascomata with aseptate,hyaline ascospores that lack germ slits may probably be ancestral Xylariomycetidae having plant-fungal endo-phytic associations.The Amphisphaeriales remained mostly astromatic with common septate,hyaline ascospores.Stromatic variations may have developed mostly during the Cretaceous period.Brown ascospores are common in Xylariales,but they first appeared in Amphisphaeriaceae,Melogrammataceae and Sporocadaceae during the early Cretaceous.The ascospore germ slits appeared only in Xylariales during the Cretaceous after the divergence of Lopadostomataceae.Hyaline,filiform and apiospores may have appeared as separate lineages,providing the basis for Xylariaceae,which may have diverged inde-pendently.The future classification of polyphyletic xylarialean taxa will not be based on stromatic variations,but the type of ring,the colour of the ascospores,and the presence or absence or the type of germ slit.展开更多
The correlation of single-particle imaging and absorption spectroscopy made the development of sizing curves possible and enabled rapid size determination of semiconductor nanocrystals based solely on optical properti...The correlation of single-particle imaging and absorption spectroscopy made the development of sizing curves possible and enabled rapid size determination of semiconductor nanocrystals based solely on optical properties.The increasing demand and production of such materials has resulted in a question of comparability between existing models and adequate volume-weighted size-determining measurement techniques.Small-angle X-ray scattering(SAXS)is a well-established method for obtaining nanostructural information from particle systems while operating sample quantities up to a commercial scale with a large amount of statistically based data.This work utilizes laboratory SAXS to characterize cadmium selenide nanocrystals with band edge energies between 1.97 and 3.08 eV.The evaluation of the scattering patterns is based on an indirect Fourier transformation(IFT),while dimensional parameters are derived from the model-free pair distance distribution functions(Dmode and Dg),as well as the modeled volume(Dv)and number(Dn)-weighted size-density distributions.We find that comparable data from D̅n agree well with existing X-ray diffraction(XRD)and with transmission electron microscopy(TEM)results described in literature;this qualifies SAXS as an equivalent integral characterization method.Although based on an estimate,the radius of gyration yields equivalent accurate results.Additionally,corresponding volume-weighted data are shown that can be useful when transferring information to other techniques.Dmode parametrization represents the largest estimated size of the sample and implies that particles interact and deviate from the spherical morphology,whereas Dv demonstrates results not considering such effects.A full set of the parameters discussed quantifies the quality of a sample.展开更多
The load-bearing behaviour of lubricated contacts depends primarily on the normal force,the relative velocity,and the geometry.Thus,with the aid of the Stribeck curve,it is usually well possible to characterize whethe...The load-bearing behaviour of lubricated contacts depends primarily on the normal force,the relative velocity,and the geometry.Thus,with the aid of the Stribeck curve,it is usually well possible to characterize whether hydrodynamics,mixed friction,or boundary friction is more likely to be present.The fact that the load regime can also depend on the fluid quantity is obvious,but has hardly been systematically investigated so far.Especially for contacts with microscopic roughness,the defined application of a very small amount of fluid is a very challenging requirement.In this paper,a very fundamental study shows how a pin-on-disc tribometer can be used to achieve the transition from dry friction via mixed friction to predominant hydrodynamics by the amount of supplied fluid.The experiments are carried out on samples filed with different coarseness.In addition,the simultaneous influence of partial filling and normal force as well as relative velocity is also shown.Very good reproducibility has been practically reached over the entire range of the tests.Regarding the quantities for the coefficient of friction(COF),it was concluded that close to full filling,a reduction of the fluid quantity has a similar effect on the COF as the reduction of the velocity.This property goes along with the common theory of starved lubricated systems.Such behaviour was not observed to the same extent for the normal force.In the vicinity of smaller fluid quantities,the COF increases very rapidly with further reduction in fluid quantity,far more disproportionately than that with reduction in velocity.With a deeper understanding of this problem,various practical issues such as idling or the run-up process in bearings can also be studied in a more focused manner.展开更多
The science of geomorphology works on natural 3D landforms.Research includes the change of landforms as well as the processes causing these changes.Material transport processes lead to a composition of a geomorphic sy...The science of geomorphology works on natural 3D landforms.Research includes the change of landforms as well as the processes causing these changes.Material transport processes lead to a composition of a geomorphic system that follows a certain spatial hierarchy.The analysis of 3D topological relations of landforms can help to investigate geomorphic systems in two ways.First,chronological order of geomorphic genesis can be derived and,second,indications of material source can be found.However,at least some 3D geometric information is needed if topology is supposed to be derived and examined.Landforms cannot simply be reconstructed by surface measurements.Data capture is a major problem when buried features are under investigation.Subsurface information is gathered by drillings or geophysical methods that reveal point or line information.Unfortunately,the ISO 19107 Spatial Schema does not offer a valid representation of 3D geometry from sparse data,either by aggregating a surface and one or few points or by aggregating a surface and a line.Here,we discuss the possibilities for the analysis of chronological order of landform genesis and material dependencies that arise from applying 3D topological relationships to geomorphic system analysis.We show five relationships that are able to be observed in nature.Further,we introduce a new class for the representation of 3D objects with under-specified geometry.A_UG_Solid mediates between the Spatial Schema’s geometric primitives with a dimension less than three on the one side and a GM_Solid on the other side.Constraints to aggregate such a_UG_Solid are defined.The introduction of a_UG_Solid facilitates the application of 3D topological concepts to geometric objects that are known to be volumetric but have to be modeled from sparse data.展开更多
In the recent years,dielectric elastomers(DEs) have become the most popular actuators owing to their special properties such as large deformation,light weight,flexibility,and chemical and biological compatibility in...In the recent years,dielectric elastomers(DEs) have become the most popular actuators owing to their special properties such as large deformation,light weight,flexibility,and chemical and biological compatibility in the field of soft material[1].A DE consists of a polymer film sandwiched between two compliant electrodes.展开更多
Biodiversity loss from disturbances caused by human activities means that species are disappearing at an ever increasing rate.The high number of species that have yet to be described have generated extreme crisis to t...Biodiversity loss from disturbances caused by human activities means that species are disappearing at an ever increasing rate.The high number of species that have yet to be described have generated extreme crisis to the taxonomist.Therefore,more than in any other era,effective ways to discover and delimitate species are needed.This paper reviews the historically fore-most approaches used to delimit species in Ascomycota,the most speciose phylum of Fungi.These include morphological,biological,and phylogenetic species concepts.We argue that a single property to delineate species boundaries has various defects and each species concept comes with its own advantages and disadvantages.Recently the rate of species discovery has increased because of the advancement of phylogenetic approaches.However,traditional phylogenetic methods with few gene regions lack species-level resolution,and do not allow unambiguous conclusions.We detail the processes that affect gene tree heterogeneity,which acts as barriers to delimiting species boundaries in classical low-rank phylogenies.So far,limited insights were given to the DNA-based methodologies to establish well-supported boundaries among fungal species.In addition to reviewing concepts and methodologies used to delimit species,we present a case study.We applied differ-ent species delimitation methods to understand species boundaries in the plant pathogenic and cryptic genus Phyllosticta(Dothideomycetes,Botryosphaeriales).Several DNA-based methods over-split the taxa while in some methods several taxa fall into a single species.These problems can be resolved by using multiple loci and coalescence-based methods.Further,we discuss integrative approaches that are crucial for understanding species boundaries within Ascomycota and provide several examples for ideal and pragmatic approaches of species delimitation.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 22279091)。
文摘MXene,the two-dimensional transition metal carbide or nitride material,was first discovered in 2011.They possess superior characteristics such as stability,electric conductivity,and electrochemical properties,that make them attract the attention of the energy engineering field.Overall water splitting which generates hydrogen and oxygen,not only serves as a clean energy supply technology but also demonstrates the capacity for redistribution and integration of renewable energy.MXene based non-noble metal has demonstrated significant potential in terms of cost-effectiveness.Therefore,the current focus is implementing targeted regulation at the micro level to render it effective comparable to the precious metals.In this context,the mechanisms of the hydrogen evolution reaction(HER) and the oxygen evolution reaction(OER) under the influence of MXene can be elucidated in terms of electron and ion transfer processes,hydrogen coverage,and regulation of terminal groups.Certainly,the composition,structure,synthesis,and stability strategies of MXene are the subjects of comprehensive investigation from both theoretical calculations using density functional theory(DFT) and experimental perspectives.In addition,this review provides a comprehensive summary of MXene based non-noble metal and various modification methods.These methods encompass doping,vacancy engineering,hybrid structures,heterojunction formation,multi-scale engineering,surface engineering,and phase engineering.The review also presents suggestions for designing high-performance MXene based on non-noble metals.It offers guidance on employing construction strategies for electrocatalysts.By leveraging the unique properties and tunability of MXene and implementing these modification methods,researchers can enhance the catalytic activity,stability,selectivity,and efficiency of MXene based non-noble metal catalysts.
文摘The reaction between high purity nickel (99.999%) and high purity tin (99.999%) was investigated in the temperature range of 232℃ - 330℃, at short periods of annealing (1 - 60 s). The reaction kinetic was studied using cross-sectional scanning electron microscope (SEM) images. The intermetallic compound (IMC) growth was analyzed using the empirical power law and a time dependence in the range of 0.26 to 0.33 was found. The morphology of the IMC was investigated by SEM in the temperature range of 235℃ - 290℃, at annealing periods of 10 s, 30 s, and 60 s by selectively etching away the remaining elementary tin. The exposed IMC displays a change in morphology with increasing annealing temperature, demonstrating that the growth velocity of certain crystallographic orientations of the IMC is strongly influenced by the annealing temperature. Additionally, coarsening and crumbling of the IMC grains is observed, and will be discussed with respect to the responsible mechanisms.
文摘In this investigation, the influence of a thin gold (Au) layer on the growth behavior of the intermetallic compound (IMC) in a Nickel-Tin-Solder (NiSn-Solder) was studied. The reaction kinetics was studied in the temperature range of 232℃ to 330℃ using cross-sectional scanning electron microscope (SEM) images. The kinetics of the reaction was determined using the empirical power law and the research showed that the introduction of an Au layer changes the reaction kinetics of the solder significantly. Furthermore, the change in reaction kinetics was accompanied by a change in morphology of the developing grains. The grain morphology of the IMC was studied for samples annealed at 290℃using cross-sectional and top-view samples and compared to Au free NiSn-Solder.
文摘Growth depression of Rosa plants at sites previously used to cultivate the same or closely related species is a typical symptom of rose replant disease(RRD).Currently,limited information is available on the causes and the etiology of RRD compared to apple replant disease(ARD).Thus,this study aimed at analyzing growth characteristics,root morphology,and root metabolites,as well as microbial communities in the rhizosphere of the susceptible rootstock Rosa corymbifera‘Laxa’grown in RRD-affected soil from two sites(Heidgraben and Sangerhausen),either untreated or disinfected byγ-irradiation.In a greenhouse bioassay,plants developed significantly more biomass in theγ-irradiated than in the untreated soils of both sites.Several plant metabolites detected in R.corymbifera‘Laxa’roots were site-and treatment-dependent.Although aloesin was recorded in significantly higher concentrations in untreated than inγ-irradiated soils from Heidgraben,the concentrations of phenylalanine were significantly lower in roots from untreated soil of both sites.Rhizosphere microbial communities of 8-week-old plants were studied by sequencing of 16S rRNA,ITS,and cox gene fragments amplified from total community DNA.Supported by microscopic observations,sequences affiliated to the bacterial genus Streptomyces and the fungal genus Nectria were identified as potential causal agents of RRD in the soils investigated.The relative abundance of oomycetes belonging to the genus Pythiogeton showed a negative correlation to the growth of the plants.Overall,the RRD symptoms,the effects of soil treatments on the composition of the rhizosphere microbial community revealed striking similarities to findings related to ARD.
文摘The major issues concerning water development and management include water conservation and the efficiency of water use, cost recovery, social and environmental factors. So continuous monitoring is essential to evaluate the reclamation impacts on the groundwater potentiality such as Esna Area. The main objective of this work is to determine the new development areas in Esna during the period from 1984 to 2011 using remote sensing technique. The impacts of the present and future development have been evaluated by using the two-dimensional numerical groundwater flow Simulation Package (visual modflow 4.2). The package is used to construct and calibrate a numerical model that can be used to simulate the response of the aquifer in the study area under implementing different management alternatives in the form of changes in piezometric levels and salinity. From land use maps of the study area in the year 2011, a lot of changes in development areas especially out the border of the old land were observed. The change in land reclaimed area was estimated with 44% in the period from year 1984 to 2011. This development accompanied with draw down about 2.5 meters through this period of time. The authors recommend applying different kinds of change detection technique on the study area. Comparing between results, continuous monitoring of the development area is highly recommended.
基金the China Scholarship Council for a personal financial grant(no.201606200045)supported by the European Research Council via a Starting GrantDutch Research Council(NWO)for a VICI grant to S.Bonnet.
文摘Gold complexes have emerged as promising anticancer metallodrugs due to their efficient thioredoxin reductase(TrxR)inhibition,which disturbs the redox balance of cancer cells.However,in this model,the role of the ligand(s)coordinated to gold is often overlooked.In this work,we present a series of tetrapyridyl Au(Ⅲ)complexes that exhibit thiol-induced release of a Au(Ⅰ)ion and a tetrapyridyl ligand.The formation of a free Au(Ⅰ)center is responsible for the expected TrxR inhibition.Additionally,the released ligand,which was visible in cells due to its intense blue fluorescence,showed excellent binding properties to the hERG potassium channel.Moreover,these ligands ended up in the lysosomes,resulting in significant lysosome damage.Altogether,the Au(Ⅲ)complexes presented in this work showed broad-spectrum anticancer properties,both in hypoxic 2D monolayers and 3D tumor spheroids.We suggest that the interaction of the released Au(Ⅰ)center and the tetrapyridyl ligand with two different protein targets may combine into prodrugs that overcome hypoxia-induced drug deactivation.
文摘The great diversity of dedicated hybrid transmissions(DHTs)requires a method to identify solutions among all potential concepts involved in each structure.Therefore,a DHT synthesis tool is developed on the basis of general transmission synthesis.In the first synthesis step,transmission structures are generated with only conventional functions such as driving with only the internal combustion engine.Electric machines are then installed in the transmissions to achieve further hybrid functions,including boosting,eCVT and electric driving modes.The number of generated transmission concepts increases exponentially with each synthesis step.Various evaluations are carried out successively to identify the most suitable DHT concepts among the many possible solutions.The generated DHT concepts are evaluated in terms of structural feasibility,driving modes,drivability and load factors on transmission components.An example of DHT synthesis involving planetary gear sets is explained in detail.The best five DHT structures are identified out of more than 120 billion solutions.
文摘The integration of one or more electricmachines into the drivetrain has resulted inmany different powertrain concepts in recent years,ranging from the P2 hybrid to dedicated hybrid transmission(DHT).Two types of DHT with different characteristics are investigated.The first type is the power split hybrid(PS-DHT),which has very low mechanical complexity but needs high electrical effort in the transmission.The second type is multi-mode DHT(MM-DHT),which has a slightly higher mechanical complexity but much less electrical effort when compared with the PS-DHT.A transmission synthesis is used to determine the concept of the MM-DHT.The three different powertrain concepts(i.e.,P2,PS-DHT,and MM-DHT)are analyzed and evaluated regarding fuel economy and performance.Legal driving cycles(e.g.,Worldwide Harmonized Light vehicles Test Procedure)and the 3D method(driver,driven vehicle,driving environs)are used to investigate the drivetrain in the context of real driving operation.Results show that the two DHT concepts offer better fuel economy than the P2 hybrid drivetrain while still providing the same or even better driving performance.The study also shows that new hybrid concepts created with transmission synthesis can lead to further improvements in hybrid powertrains.
基金supported by the Deutsche Forschungsgemeinschaft(grant GRK2223/1)to R.H.and R.R.M.
文摘An ever-increasing number of intracellular multi-protein networks have been identified in plant cells.Split-GFP-based protein–protein interaction assays combine the advantages of in vivo interaction studies in a native environment with additional visualization of protein complex localization.Because of their simple protocols,they have become some of the most frequently used methods.However,standard fluorescent proteins present several drawbacks for sophisticated microscopy.With the HaloTag system,these drawbacks can be overcome,as this reporter forms covalent irreversible bonds with synthetic photostable fluorescent ligands.Dyes can be used in adjustable concentrations and are suitable for advanced microscopy methods.Therefore,we have established the Split-HaloTag imaging assay in plants,which is based on the reconstitution of a functional HaloTag protein upon protein–protein interaction and the subsequent covalent binding of an added fluorescent ligand.Its suitability and robustness were demonstrated using a well-characterized interaction as an example of protein–protein interaction at cellular structures:the anchoring of the molybdenumcofactor biosynthesis complex to filamentous actin.In addition,a specific interactionwas visualized in a more distinctivemannerwith subdiffractional polarizationmicroscopy,Airyscan,and structured illumination microscopy to provide examples of sophisticated imaging.Split-GFPand Split-HaloTag can complement one another,as Split-HaloTag represents an alternative option and an addition to the large toolbox of in vivo methods.Therefore,this promising new Split-HaloTag imaging assay provides a unique and sensitive approach formore detailed characterization of protein–protein interactions using specific microscopy techniques,such as 3D imaging,single-molecule tracking,and super-resolution microscopy.
基金supported by the Sino-German Center for Research Promotion (No.GZ 983)the German Science Foundation DFG (No.IRTG 2101)+1 种基金the Joint Fund of the National Natural Science Foundation of Chinathe China Academy of Engineering Physics (No.U1230104)
文摘Near-field holography(NFH), with its virtues of precise critical dimensions and high throughput, has a great potential for the realization of soft x-ray diffraction gratings. We show that NFH with reflections reduced by the integration of antireflective coatings(ARCs) simplifies the NFH process relative to that of setups using refractive index liquids. Based on the proposed NFH with ARCs, gold-coated laminar gratings were fabricated using NFH and subsequent ion beam etching. The efficiency angular spectrum shows that the stray light of the gratings is reduced one level of magnitude by the suppression of interface reflections during NFH.
文摘The calibration of conventional,hybrid and electric drivetrains is an important process during the development phase of any vehicle.Therefore,to optimize the comfort and dynamic behavior(known as driveability),many test drives are performed by experienced drivers during different driving maneuvers,e.g.,launch,re-launch or gear shift.However,the process can be kept more consistent and independent of human-based deviations by using objective ratings.This study first introduces an objective rating system developed for the launch behavior of conventional vehicles with automatic transmission,dual-clutch transmission,and alternative drivetrains.Then,the launch behavior,namely comfort and dynamic quality,is compared between two conventional vehicles,a plug-in hybrid electric vehicle and a battery electric vehicle.Results show the benefits of pure electric drivetrains due to the lack of launch and shifting elements,as well as the usage of a highly dynamic electric motor.While the plug-in hybrid achieves a 10%higher overall rating compared to the baseline conventional vehicle,the pure electric vehicle even achieves a 21%higher overall rating.The results also highlight the optimization potential of battery electric vehicles regarding their comfort and dynamic characteristics.The transitions and the gradient of the acceleration build-up have a major influence on the launch quality.
文摘The integration of gallium nitride(GaN)nanowire light-emitting diodes(nanoLEDs)on flexible substrates offers opportunities for applications beyond rigid solid-state lighting(e.g.,for wearable optoelectronics and bendable inorganic displays).Here,we report on a fast physical transfer route based on femtosecond laser lift-off(fs-LLO)to realize wafer-scale top–down GaN nanoLED arrays on unconventional platforms.Combined with photolithography and hybrid etching processes,we successfully transferred GaN blue nanoLEDs from a full two-inch sapphire substrate onto a flexible copper(Cu)foil with a high nanowire density(~107 wires/cm2),transfer yield(~99.5%),and reproducibility.Various nanoanalytical measurements were conducted to evaluate the performance and limitations of the fs-LLO technique as well as to gain insights into physical material properties such as strain relaxation and assess the maturity of the transfer process.This work could enable the easy recycling of native growth substrates and inspire the development of large-scale hybrid GaN nanowire optoelectronic devices by solely employing standard epitaxial LED wafers(i.e.,customized LED wafers with additional embedded sacrificial materials and a complicated growth process are not required).
基金Joint Fund of the National Natural Science Foundation of China and the Karst Science Research Center of Guizhou province,U1812401,Jian-Kui Jack LiuThailand Research,RDG6130001,Kevin D.Hyde+1 种基金Thailand Science Research and Innovation(TSRI)grant,DBG6280009,Kevin D.Hydethe State Research Task of the Subtropical Scientific Centre of the Russian Academy of Sciences(Theme No.0492-2021-0007).
文摘Xylariomycetidae(Ascomycota)is a highly diversified group with variable stromatic characters.Our research focused on inconspicuous stromatic xylarialean taxa from China,Italy,Russia,Thailand and the United Kingdom.Detailed morpho-logical descriptions,illustrations and combined ITS-LSU-rpb2-tub2-tef1 phylogenies revealed 39 taxa from our collections belonging to Amphisphaeriales and Xylariales.A new family(Appendicosporaceae),five new genera(Magnostiolata,Mela-nostictus,Neoamphisphaeria,Nigropunctata and Paravamsapriya),27 new species(Acrocordiella photiniicola,Allocryp-tovalsa sichuanensis,Amphisphaeria parvispora,Anthostomella lamiacearum,Apiospora guiyangensis,A.sichuanensis,Biscogniauxia magna,Eutypa camelliae,Helicogermslita clypeata,Hypocopra zeae,Magnostiolata mucida,Melanostictus longiostiolatus,M.thailandicus,Nemania longipedicellata,N.delonicis,N.paraphysata,N.thailandensis,Neoamphispha-eria hyalinospora,Neoanthostomella bambusicola,Nigropunctata bambusicola,N.nigrocircularis,N.thailandica,Occul-titheca rosae,Paravamsapriya ostiolata,Peroneutypa leucaenae,Seiridium italicum and Vamsapriya mucosa)and seven new host/geographical records are introduced and reported.Divergence time estimates indicate that Delonicicolales diverged from Amphisphaeriales+Xylariales at 161(123-197)MYA.Amphisphaeriales and Xylariales diverged 154(117-190)MYA with a crown age of 127(92-165)MYA and 147(111-184)MYA,respectively.Appendicosporaceae(Amphisphaeriales)has a stem age of 89(65-117)MYA.Ancestral character state reconstruction indicates that astromatic,clypeate ascomata with aseptate,hyaline ascospores that lack germ slits may probably be ancestral Xylariomycetidae having plant-fungal endo-phytic associations.The Amphisphaeriales remained mostly astromatic with common septate,hyaline ascospores.Stromatic variations may have developed mostly during the Cretaceous period.Brown ascospores are common in Xylariales,but they first appeared in Amphisphaeriaceae,Melogrammataceae and Sporocadaceae during the early Cretaceous.The ascospore germ slits appeared only in Xylariales during the Cretaceous after the divergence of Lopadostomataceae.Hyaline,filiform and apiospores may have appeared as separate lineages,providing the basis for Xylariaceae,which may have diverged inde-pendently.The future classification of polyphyletic xylarialean taxa will not be based on stromatic variations,but the type of ring,the colour of the ascospores,and the presence or absence or the type of germ slit.
基金The authors thank the Laboratory for Nano and Quantum Engineering(LNQE),Leibniz University Hannover,for the access to the TEM instrument and Dr.Brian Pauw from the Bundesanstalt für Materialforschung und-prüfung(BAM)in Berlin for the scientific discussion about SAXS and the provision of the Ag-reference.We also acknowledge the work of David Niedbalka and Marcel Pastuschek who contributed to this research during their time as students.This research was partially funded by Niedersächsisches Ministerium für Wissenschaft und Kultur through the“Quantumand Nano-Metrology(QUANOMET)”initiative(ZN3245)within the scope of the NP-1 project.Furthermore,we acknowledge financial travel support by the DFG Research Training Group GrK1952“Metrology for Complex Nanosystems(NanoMet)”.
文摘The correlation of single-particle imaging and absorption spectroscopy made the development of sizing curves possible and enabled rapid size determination of semiconductor nanocrystals based solely on optical properties.The increasing demand and production of such materials has resulted in a question of comparability between existing models and adequate volume-weighted size-determining measurement techniques.Small-angle X-ray scattering(SAXS)is a well-established method for obtaining nanostructural information from particle systems while operating sample quantities up to a commercial scale with a large amount of statistically based data.This work utilizes laboratory SAXS to characterize cadmium selenide nanocrystals with band edge energies between 1.97 and 3.08 eV.The evaluation of the scattering patterns is based on an indirect Fourier transformation(IFT),while dimensional parameters are derived from the model-free pair distance distribution functions(Dmode and Dg),as well as the modeled volume(Dv)and number(Dn)-weighted size-density distributions.We find that comparable data from D̅n agree well with existing X-ray diffraction(XRD)and with transmission electron microscopy(TEM)results described in literature;this qualifies SAXS as an equivalent integral characterization method.Although based on an estimate,the radius of gyration yields equivalent accurate results.Additionally,corresponding volume-weighted data are shown that can be useful when transferring information to other techniques.Dmode parametrization represents the largest estimated size of the sample and implies that particles interact and deviate from the spherical morphology,whereas Dv demonstrates results not considering such effects.A full set of the parameters discussed quantifies the quality of a sample.
基金German Research Foundation for funding this project(No.390252106,“Fundamental Studies on Tribological Contacts with Partially Filled Gaps”).
文摘The load-bearing behaviour of lubricated contacts depends primarily on the normal force,the relative velocity,and the geometry.Thus,with the aid of the Stribeck curve,it is usually well possible to characterize whether hydrodynamics,mixed friction,or boundary friction is more likely to be present.The fact that the load regime can also depend on the fluid quantity is obvious,but has hardly been systematically investigated so far.Especially for contacts with microscopic roughness,the defined application of a very small amount of fluid is a very challenging requirement.In this paper,a very fundamental study shows how a pin-on-disc tribometer can be used to achieve the transition from dry friction via mixed friction to predominant hydrodynamics by the amount of supplied fluid.The experiments are carried out on samples filed with different coarseness.In addition,the simultaneous influence of partial filling and normal force as well as relative velocity is also shown.Very good reproducibility has been practically reached over the entire range of the tests.Regarding the quantities for the coefficient of friction(COF),it was concluded that close to full filling,a reduction of the fluid quantity has a similar effect on the COF as the reduction of the velocity.This property goes along with the common theory of starved lubricated systems.Such behaviour was not observed to the same extent for the normal force.In the vicinity of smaller fluid quantities,the COF increases very rapidly with further reduction in fluid quantity,far more disproportionately than that with reduction in velocity.With a deeper understanding of this problem,various practical issues such as idling or the run-up process in bearings can also be studied in a more focused manner.
文摘The science of geomorphology works on natural 3D landforms.Research includes the change of landforms as well as the processes causing these changes.Material transport processes lead to a composition of a geomorphic system that follows a certain spatial hierarchy.The analysis of 3D topological relations of landforms can help to investigate geomorphic systems in two ways.First,chronological order of geomorphic genesis can be derived and,second,indications of material source can be found.However,at least some 3D geometric information is needed if topology is supposed to be derived and examined.Landforms cannot simply be reconstructed by surface measurements.Data capture is a major problem when buried features are under investigation.Subsurface information is gathered by drillings or geophysical methods that reveal point or line information.Unfortunately,the ISO 19107 Spatial Schema does not offer a valid representation of 3D geometry from sparse data,either by aggregating a surface and one or few points or by aggregating a surface and a line.Here,we discuss the possibilities for the analysis of chronological order of landform genesis and material dependencies that arise from applying 3D topological relationships to geomorphic system analysis.We show five relationships that are able to be observed in nature.Further,we introduce a new class for the representation of 3D objects with under-specified geometry.A_UG_Solid mediates between the Spatial Schema’s geometric primitives with a dimension less than three on the one side and a GM_Solid on the other side.Constraints to aggregate such a_UG_Solid are defined.The introduction of a_UG_Solid facilitates the application of 3D topological concepts to geometric objects that are known to be volumetric but have to be modeled from sparse data.
基金supported by the National Key R&D Program of China(Grant No.2016YFB0200700)the National Natural Science Foundation of China(Grant Nos.11372025,11572024,and 11432002)the Defense Industrial Technology Development Program(Grant Nos.JCKY2013601B,JCKY2013205B,and JCKY2016205C)
文摘In the recent years,dielectric elastomers(DEs) have become the most popular actuators owing to their special properties such as large deformation,light weight,flexibility,and chemical and biological compatibility in the field of soft material[1].A DE consists of a polymer film sandwiched between two compliant electrodes.
基金Danny Haelewaters is supported by the Research Foundation-Flanders(junior postdoctoral fellowship 1206620N)Dhanushka Wanasinghe thanks the CAS President’s International Fellowship Initiative(PIFI)for funding his postdoctoral research(number 2021FYB0005)the Postdoctoral Fund from Human Resources and Social Security Bureau of Yunnan Province.
文摘Biodiversity loss from disturbances caused by human activities means that species are disappearing at an ever increasing rate.The high number of species that have yet to be described have generated extreme crisis to the taxonomist.Therefore,more than in any other era,effective ways to discover and delimitate species are needed.This paper reviews the historically fore-most approaches used to delimit species in Ascomycota,the most speciose phylum of Fungi.These include morphological,biological,and phylogenetic species concepts.We argue that a single property to delineate species boundaries has various defects and each species concept comes with its own advantages and disadvantages.Recently the rate of species discovery has increased because of the advancement of phylogenetic approaches.However,traditional phylogenetic methods with few gene regions lack species-level resolution,and do not allow unambiguous conclusions.We detail the processes that affect gene tree heterogeneity,which acts as barriers to delimiting species boundaries in classical low-rank phylogenies.So far,limited insights were given to the DNA-based methodologies to establish well-supported boundaries among fungal species.In addition to reviewing concepts and methodologies used to delimit species,we present a case study.We applied differ-ent species delimitation methods to understand species boundaries in the plant pathogenic and cryptic genus Phyllosticta(Dothideomycetes,Botryosphaeriales).Several DNA-based methods over-split the taxa while in some methods several taxa fall into a single species.These problems can be resolved by using multiple loci and coalescence-based methods.Further,we discuss integrative approaches that are crucial for understanding species boundaries within Ascomycota and provide several examples for ideal and pragmatic approaches of species delimitation.