显式模型下建立的肝脏分割算法受适用条件的限制,不能有效地控制分割进程,制约了算法鲁棒性和泛化能力的提高.针对这一问题,该文提出了一个新的方法,将肝脏分割问题转化为隐式函数最优值搜索,依据图像实际数据和先验形状信息有效地控制...显式模型下建立的肝脏分割算法受适用条件的限制,不能有效地控制分割进程,制约了算法鲁棒性和泛化能力的提高.针对这一问题,该文提出了一个新的方法,将肝脏分割问题转化为隐式函数最优值搜索,依据图像实际数据和先验形状信息有效地控制分割进程,以迭代搜索策略得到肝脏的最优分割结果.每一个迭代步骤由两部分组成:首先,利用MRF(Markov Random Field)实现已有肝脏轮廓邻域的局部再分割,重新调整肝脏轮廓;然后,利用先验形状稀疏表示调整后的形状,有效地修正噪声、边界模糊等因素引起的错误分割,并将修正后的肝脏轮廓用于下一轮局部再分割.肝脏分割结果在迭代过程中不断逼近真实值.为了提高形状稀疏表示的计算精度和速度,该文改进了相关技术细节,提出了动态字典生成策略,并利用混合粒子群算法求解稀疏表示方程.与金标准相比,该文所提算法在边界模糊、对比度低、存在大量其他干扰组织区域等不利因素的情景中,其分割精度(Volume Overlap Percentage,VOE)可达到90%以上.展开更多
文摘显式模型下建立的肝脏分割算法受适用条件的限制,不能有效地控制分割进程,制约了算法鲁棒性和泛化能力的提高.针对这一问题,该文提出了一个新的方法,将肝脏分割问题转化为隐式函数最优值搜索,依据图像实际数据和先验形状信息有效地控制分割进程,以迭代搜索策略得到肝脏的最优分割结果.每一个迭代步骤由两部分组成:首先,利用MRF(Markov Random Field)实现已有肝脏轮廓邻域的局部再分割,重新调整肝脏轮廓;然后,利用先验形状稀疏表示调整后的形状,有效地修正噪声、边界模糊等因素引起的错误分割,并将修正后的肝脏轮廓用于下一轮局部再分割.肝脏分割结果在迭代过程中不断逼近真实值.为了提高形状稀疏表示的计算精度和速度,该文改进了相关技术细节,提出了动态字典生成策略,并利用混合粒子群算法求解稀疏表示方程.与金标准相比,该文所提算法在边界模糊、对比度低、存在大量其他干扰组织区域等不利因素的情景中,其分割精度(Volume Overlap Percentage,VOE)可达到90%以上.