Japanese larch is one of the main plantation tree species in China.A lack of engineered wood products made by Japanese larch,however,limits its application in wood stnuctures.In this study,based on optimum process par...Japanese larch is one of the main plantation tree species in China.A lack of engineered wood products made by Japanese larch,however,limits its application in wood stnuctures.In this study,based on optimum process parameters,such as pressure(12 MPa),adhesive spread rate(200 g/m^(2))and adhesive(one-component polyurethane),the mechanical properties of Japanese larch-made cross-laminated timber(CLT)with different lay-ups were evaluated by means of the static method.Results of this study showed that variations in lay-ups significantly affected the mechanical properties of CLT.The strength and modulus of bending and parallel compression for CLT increased with the thickness of lumber,while that of bending,parallel compression and rolling shear all decreased with the number of layers.Thickness,layup orientation and the number of layers all had an impact on the strength of CLT.Failure modes obtained from numerical simulation were basically the same as those of experimental tests.There was also strong alignment between theoretical value and test value for effective bending stifness and shear stifness.Thus,the shear analogy method can be used to predict the mechanical properties of CLT effectively.This study proved great potential in using Japanese larch wood for manufacturing CLT due to its good mechanical properties.展开更多
Tenon-mortise joint is widely used in traditional timber structures around the world.This paper summarizes the results of an experimental study of the structural behavior of tenon-mortise joints made with glulam and C...Tenon-mortise joint is widely used in traditional timber structures around the world.This paper summarizes the results of an experimental study of the structural behavior of tenon-mortise joints made with glulam and CNC technology instead of traditional material and manual work.30 full-scale tenonmortise joints were manufactured and tested under monotonic loading,and the effects of dimension,shape,processing error and adhesive were evaluated.It was found that the round rectangular shaped tenon-mortise joints were comparable with traditional joints in terms of structural performance,but were time and labor saving.The variability of the proposed tenon-mortise joints was lower,which would benefit the design value.Applying adhesive between tenon and mortise increased the average stiffness by 4.3 times and average moment capacity by 27.4%,respectively.The gaps between wood members had little effect on the capacity and stiffness in monotonic bending but may influence the energy dissipation ability in cyclic bending.This study showed the feasibility of combining the traditional joinery method with modern wood products and manufacturing technology,which may promote the application of tenon-mortise joints in modern timber structures.展开更多
基金by basic operating budget of scientific research institutes for public welfare at the central level(CAFBB2018SY032)China Postdoctoral Science Foundation (No.2018M641225).
文摘Japanese larch is one of the main plantation tree species in China.A lack of engineered wood products made by Japanese larch,however,limits its application in wood stnuctures.In this study,based on optimum process parameters,such as pressure(12 MPa),adhesive spread rate(200 g/m^(2))and adhesive(one-component polyurethane),the mechanical properties of Japanese larch-made cross-laminated timber(CLT)with different lay-ups were evaluated by means of the static method.Results of this study showed that variations in lay-ups significantly affected the mechanical properties of CLT.The strength and modulus of bending and parallel compression for CLT increased with the thickness of lumber,while that of bending,parallel compression and rolling shear all decreased with the number of layers.Thickness,layup orientation and the number of layers all had an impact on the strength of CLT.Failure modes obtained from numerical simulation were basically the same as those of experimental tests.There was also strong alignment between theoretical value and test value for effective bending stifness and shear stifness.Thus,the shear analogy method can be used to predict the mechanical properties of CLT effectively.This study proved great potential in using Japanese larch wood for manufacturing CLT due to its good mechanical properties.
文摘Tenon-mortise joint is widely used in traditional timber structures around the world.This paper summarizes the results of an experimental study of the structural behavior of tenon-mortise joints made with glulam and CNC technology instead of traditional material and manual work.30 full-scale tenonmortise joints were manufactured and tested under monotonic loading,and the effects of dimension,shape,processing error and adhesive were evaluated.It was found that the round rectangular shaped tenon-mortise joints were comparable with traditional joints in terms of structural performance,but were time and labor saving.The variability of the proposed tenon-mortise joints was lower,which would benefit the design value.Applying adhesive between tenon and mortise increased the average stiffness by 4.3 times and average moment capacity by 27.4%,respectively.The gaps between wood members had little effect on the capacity and stiffness in monotonic bending but may influence the energy dissipation ability in cyclic bending.This study showed the feasibility of combining the traditional joinery method with modern wood products and manufacturing technology,which may promote the application of tenon-mortise joints in modern timber structures.