期刊文献+
共找到3,420篇文章
< 1 2 171 >
每页显示 20 50 100
Progress,challenges,and prospects of spent lithium-ion batteries recycling:A review 被引量:3
1
作者 Pengwei Li Shaohua Luo +7 位作者 Lin Zhang Qiuyue Liu Yikai Wang Yicheng Lin Can Xu Jia Guo Peam Cheali Xiaoning Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期144-171,I0005,共29页
The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,batter... The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization. 展开更多
关键词 spent li-ion batteries RECYCLE Direct regeneration High-value conversion Functional materials
下载PDF
Targeted regeneration and upcycling of spent graphite by defect‐driven tin nucleation 被引量:1
2
作者 Zhiheng Cheng Zhiling Luo +7 位作者 Hao Zhang Wuxing Zhang Wang Gao Yang Zhang Long Qie Yonggang Yao Yunhui Huang Kun Kelvin Fu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期91-103,共13页
The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite ofte... The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture. 展开更多
关键词 battery recycling spent graphite targeted regeneration upcycling graphite
下载PDF
Preferentially selective extraction of lithium from spent LiCoO_(2)cathodes by medium-temperature carbon reduction roasting 被引量:1
3
作者 Daixiang Wei Wei Wang +6 位作者 Longjin Jiang Zhidong Chang Hualei Zhou Bin Dong Dekun Gao Minghui Zhang Chaofan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期315-322,共8页
Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selectiv... Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries. 展开更多
关键词 spent LiCoO_(2)cathodes medium-temperature carbon reduction lithium extraction priority crystal transformation macro-scopic transport resistance
下载PDF
An efficient recycling strategy to eliminate the residual“impurities”while heal the damaged structure of spent graphite anodes
4
作者 Dan Yang Ying Yang +7 位作者 Haoran Du Yongsheng Ji Mingyuan Ma Yujun Pan Xiaoqun Qi Quan Sun Kaiyuan Shi Long Qie 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1027-1034,共8页
The recycling of graphite from spent lithium-ion batteries(LIBs)is overlooked due to its relatively low added value and the lack of efficient recovering methods.To reuse the spent graphite anodes,we need to eliminate ... The recycling of graphite from spent lithium-ion batteries(LIBs)is overlooked due to its relatively low added value and the lack of efficient recovering methods.To reuse the spent graphite anodes,we need to eliminate their useless components(mainly the degraded solid electrolyte interphase,SEI)and reconstruct their damaged structure.Herein,a facile and efficient strategy is proposed to recycle the spent graphite on the basis of the careful investigation of the composition of the cycled graphite anodes and the rational design of the regeneration processes.The regenerated graphite,which is revitalized by calcination treatment and acid leaching,delivers superb rate performance and a high specific capacity of 370 mAh g^(-1)(~99% of its theoretical capacity)after 100 cycles at 0.1 C,superior to the commercial graphite anodes.The improved electrochemical performance could be attributed to unchoked Li^(+) transport channels and enhanced charge transfer reaction due to the effective destruction of the degraded SEI and the full recovery of the damaged structure of the spent graphite.This work clarifies that the electrochemical performance of the regenerated graphite could be deteriorated by even a trace amount of the residual“impurity”and provides a facile method for the efficient regeneration of graphite anodes. 展开更多
关键词 GRAPHITE ANODE REGENERATION Solid electrolyte interphase spent lithium-ion battery
下载PDF
Direct Regeneration of Spent Lithium-Ion Battery Cathodes:From Theoretical Study to Production Practice
5
作者 Meiting Huang Mei Wang +9 位作者 Liming Yang Zhihao Wang Haoxuan Yu Kechun Chen Fei Han Liang Chen Chenxi Xu Lihua Wang Penghui Shao Xubiao Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期304-336,共33页
Direct regeneration method has been widely concerned by researchers in the field of battery recycling because of its advantages of in situ regeneration,short process and less pollutant emission.In this review,we first... Direct regeneration method has been widely concerned by researchers in the field of battery recycling because of its advantages of in situ regeneration,short process and less pollutant emission.In this review,we firstly analyze the primary causes for the failure of three representative battery cathodes(lithium iron phosphate,layered lithium transition metal oxide and lithium cobalt oxide),targeting at illustrating their underlying regeneration mecha-nism and applicability.Efficient stripping of material from the collector to obtain pure cathode material has become a first challenge in recycling,for which we report several pretreatment methods currently available for subsequent regeneration processes.We review and discuss emphatically the research progress of five direct regeneration methods,including solid-state sintering,hydrothermal,eutectic molten salt,electrochemical and chemical lithiation methods.Finally,the application of direct regeneration technology in production practice is introduced,the problems exposed at the early stage of the industrialization of direct regeneration technol-ogy are revealed,and the prospect of future large-scale commercial production is proposed.It is hoped that this review will give readers a comprehensive and basic understanding of direct regeneration methods for used lithium-ion batteries and promote the industrial application of direct regeneration technology. 展开更多
关键词 spent LIBs Failure reasons Cathode recycling Direct regeneration Production practice
下载PDF
Selective lithium recovery and regeneration of ternary cathode from spent lithium-ion batteries:Mixed HCl-H_(2)SO_(4) leaching-spray pyrolysis approach
6
作者 Ziyu Chen Yongchao Zhou +1 位作者 Yan Li Tao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期284-293,共10页
The recycling of spent lithium-ion batteries(LIBs) is crucial for environmental protection and resource sustainability.However,the economic recovery of spent LIBs remains challenging due to low Li recovery efficiency ... The recycling of spent lithium-ion batteries(LIBs) is crucial for environmental protection and resource sustainability.However,the economic recovery of spent LIBs remains challenging due to low Li recovery efficiency and the need for multiple separation operations.Here,we propose a process involving mixed HCl-H_(2)SO_(4) leaching-spray pyrolysis for recycling spent ternary LIBs,achieving both selective Li recovery and the preparation of a ternary oxide precursor.Specifically,the process transforms spent ternary cathode(LiNi_(x)Co_yMn_(2)O_(2),NCM) powder into Li_(2)SO_(4) solution and ternary oxide,which can be directly used for synthesizing battery-grade Li_(2)CO_(3) and NCM cathode,respectively.Notably,SO_(4)^(2-) selectively precipitates with Li^(+) to form thermostable Li_(2)SO_(4) during the spray pyrolysis,which substantially improves the Li recovery efficiency by inhibiting Li evaporation and intercalation.Besides,SO_(2) emissions are avoided by controlling the molar ratio of Li^(+)/SO_(4)^(2-)(≥2:1),The mechanism of the preferential formation of Li_(2)SO_(4) is interpreted from its reverse solubility variation with temperature.During the recycling of spent NCM811,92% of Li is selectively recovered,and the regenerated NCM811 exhibits excellent cycling stability with a capacity retention of 81.7% after 300 cycles at 1 C.This work offers a simple and robust process for the recycling of spent NCM cathodes. 展开更多
关键词 spent lithium-ion batteries Selective lithium recovery Spray pyrolysis Cathode regeneration Acid-leaching
下载PDF
Upcycling the spent graphite/LiCoO_(2) batteries for high-voltage graphite/LiCoPO_(4)-co-workable dual-ion batteries
7
作者 Miao Du Hongyan Lü +5 位作者 Kaidi Du Shuohang Zheng Xiaotong Wang Xiaotong Deng Ronghua Zeng Xinglong Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1745-1751,共7页
The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such h... The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such huge amounts of spent LIBs.Therefore,we proposed an ecofriendly and sustainable double recycling strategy to concurrently reuse the cathode(LiCoO_(2))and anode(graphite)materials of spent LIBs and recycled LiCoPO_(4)/graphite(RLCPG)in Li^(+)/PF^(-)_(6) co-de/intercalation dual-ion batteries.The recycle-derived dualion batteries of Li/RLCPG show impressive electrochemical performance,with an appropriate discharge capacity of 86.2 mAh·g^(-1) at25 mA·g^(-1) and 69%capacity retention after 400 cycles.Dual recycling of the cathode and anode from spent LIBs avoids wastage of resources and yields cathode materials with excellent performance,thereby offering an ecofriendly and sustainable way to design novel secondary batteries. 展开更多
关键词 RECYCLE lithium cobalt oxide lithium cobalt phosphate GRAPHITE dual-ion batteries spent lithium-ion batteries
下载PDF
Recovery of Li, Ni, Co and Mn from spent lithium-ion batteries assisted by organic acids: Process optimization and leaching mechanism
8
作者 Liuyi Ren Bo Liu +5 位作者 Shenxu Bao Wei Ding Yimin Zhang Xiaochuan Hou Chao Lin Bo Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期518-530,共13页
The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous subs... The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process. 展开更多
关键词 spent lithium-ion batteries LEACHING response surface methodology sulfuric acid citric acid
下载PDF
Preparation of high purity ruthenium nitrosyl nitrate from spent Ru-Zn/ZrO_(2)catalyst
9
作者 LIU Kai-ming QIU Yun-ren LI Yan 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3014-3023,共10页
Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying t... Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying to obtain ruthenium trichloride,nitrosation and hydrolysis to obtain ruthenium nitrosyl hydroxide,removing of K^(+)and Cl^(-),and neutralization with nitric acid.The effects of temperature,concentration,time and pH on the yield and purity of intermediates and final product were studied,and the optimum process conditions were obtained.The yield of ruthenium nitrosyl nitrate is 92%,the content of ruthenium in high purity product is 32.16%,and the content of Cl^(-)and K^(+)are much less than 0.005%.The reaction kinetics of ruthenium nitrosyl chloride to ruthenium nitrosyl hydroxide was studied.The reaction orders of Ru(NO)Cl_(3)at 40,55 and 70℃are 0.39,0.37 and 0.39,respectively,while those of KOH are 0.16,0.15 and 0.17,respectively.The activation energy is-2.33 k J/mol. 展开更多
关键词 ruthenium nitrosyl nitrate spent catalyst high purity utilization of wastes reaction kinetics
下载PDF
Development of sustainable and efficient recycling technology for spent Li-ion batteries: Traditional and transformation go hand in hand
10
作者 Zejian Liu Gongqi Liu +4 位作者 Leilei Cheng Jing Gu Haoran Yuan Yong Chen Yufeng Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期802-830,共29页
Clean and efficient recycling of spent lithium-ion batteries(LIBs)has become an urgent need to promote sustainable and rapid development of human society.Therefore,we provide a critical and comprehensive overview of th... Clean and efficient recycling of spent lithium-ion batteries(LIBs)has become an urgent need to promote sustainable and rapid development of human society.Therefore,we provide a critical and comprehensive overview of the various technologies for recycling spent LIBs,starting with lithium-ion power batteries.Recent research on raw material collection,metallurgical recovery,separation and purification is highlighted,particularly in terms of all aspects of economic efficiency,energy consumption,technology transformation and policy management.Mechanisms and pathways for transformative full-component recovery of spent LIBs are explored,revealing a clean and efficient closed-loop recovery mechanism.Optimization methods are proposed for future recycling technologies,with a focus on how future research directions can be industrialized.Ultimately,based on life-cycle assessment,the challenges of future recycling are revealed from the LIBs supply chain and stability of the supply chain of the new energy battery industry to provide an outlook on clean and efficient short process recycling technologies.This work is designed to support the sustainable development of the new energy power industry,to help meet the needs of global decarbonization strategies and to respond to the major needs of industrialized recycling. 展开更多
关键词 spent LIBs Transformative recycling LCA analysis Policy guidance High value utilization
下载PDF
Valuable metals recovery from spent ternary lithium-ion battery:A review
11
作者 Hao Liao Shengen Zhang +3 位作者 Bo Liu Xuefeng He Jixin Deng Yunji Ding 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2556-2581,共26页
Ternary lithium-ion batteries(LIBs),widely used in new energy vehicles and electronic products,are known for their high en-ergy density,wide operating temperature range,and excellent cycling performance.With the rapid... Ternary lithium-ion batteries(LIBs),widely used in new energy vehicles and electronic products,are known for their high en-ergy density,wide operating temperature range,and excellent cycling performance.With the rapid development of the battery industry,the recycling of spent ternary LIBs has become a hot topic because of their economic value and environmental concerns.To date,a con-siderable amount of literature has reported on the recycling of spent ternary LIBs designed to provide an efficient,economical,and envir-onmentally friendly method for battery recycling.This article examines the latest developments in various technologies for recycling spent ternary LIBs in both research and practical production,including pretreatment,pyrometallurgy,hydrometallurgy,pyro-hydrometallurgy,and direct regeneration.Suggestions for addressing challenges based on the benefits and disadvantages of each method are made.Finally,through a comparison of the feasibility and economic benefits of various technologies,the challenges faced during battery recycling are summarized,and future development directions are proposed. 展开更多
关键词 spent ternary LIBs recycling technologies valuable metals economic analysis
下载PDF
Selective leaching of lithium from spent lithium-ion batteries using sulfuric acid and oxalic acid
12
作者 Haijun Yu Dongxing Wang +6 位作者 Shuai Rao Lijuan Duan Cairu Shao Xiaohui Tu Zhiyuan Ma Hongyang Cao Zhiqiang Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期688-696,共9页
Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a seri... Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs. 展开更多
关键词 selective leaching oxalic acid sulfuric acid spent lithium-ion batteries
下载PDF
Preparation of lithium-ion battery anode materials from graphitized spent carbon cathode derived from aluminum electrolysis
13
作者 Zhihao Zheng Mingzhuang Xie +5 位作者 Guoqing Yu Zegang Wu Jingjing Zhong Yi Wang Hongliang Zhao Fengqin Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2466-2475,共10页
Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and th... Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and the use of the purified SCC as an anode material for lithium-ion batteries is explored.The flotation and acid leaching processes were separately optimized through one-way experiments.The maximum SCC carbon content(93wt%)was achieved at a 90%proportion of−200-mesh flotation particle size,a slurry concentration of 10wt%,a rotation speed of 1600 r/min,and an inflatable capacity of 0.2 m^(3)/h(referred to as FSCC).In the subsequent acid leaching process,the SCC carbon content reached 99.58wt%at a leaching concentration of 5 mol/L,a leaching time of 100 min,a leaching temperature of 85°C,and an HCl/FSCC volume ratio of 5:1.The purified graphitized SCC(referred to as FSCC-CL)was utilized as an anode material,and it exhibited an initial capacity of 348.2 mAh/g at 0.1 C and a reversible capacity of 347.8 mAh/g after 100 cycles.Moreover,compared with commercial graphite,FSCC-CL exhibited better reversibility and cycle stability.Thus,purified SCC is an important candidate for anode material,and the flotation-acid leaching purification method is suitable for the resourceful recycling of SCC. 展开更多
关键词 graphitized spent carbon cathode hazardous solid waste flotation acid leaching lithium-ion batteries
下载PDF
Spent graphite regeneration:Exploring diverse repairing manners with impurities-catalyzing effect towards high performance and low energy consumption
14
作者 Yu Dong Zihao Zeng +7 位作者 Zhengqiao Yuan Bing Wang Hai Lei Wenqing Zhao Wuyun Ai Lingchao Kong Yue Yang Peng Ge 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期656-669,共14页
Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a deta... Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a detailed exploration of the repair mechanism.However,they still suffer from unclear repair mechanisms and physicochemical evolution.In this study,spent graphite was repaired employing three methodologies:pickling-sintering,pyrogenic-recovery,and high-temperature sintering.Owing to the catalytic effect of the metal-based impurities and temperature control,the as-obtained samples displayed an ordered transformation,including the interlayer distance,crystalline degree,and grain size.As anodes of lithium ions batteries,the capacity of repaired samples reached up to 310 mA h g^(-1)above after 300loops at 1.0 C,similar to that of commercial graphite.Meanwhile,benefitting from the effective assembly of carbon atoms in internal structure of graphite at>1400℃,their initial coulombic efficiency were>87%.Even at 2.0 C,the capacity of samples remained approximately 244 mA h g^(-1)after 500 cycles.Detailed electrochemical and kinetic analyses revealed that a low temperature enhanced the isotropy,thereby enhancing the rate properties.Further,economic and environmental analyses revealed that the revenue obtained through suitable pyrogenic-recovering manners was approximately the largest value(5500$t^(-1)).Thus,this study is expected to clarify the in-depth effect of different repair methods on the traits of graphite,while offering all-round evaluations of repaired graphite. 展开更多
关键词 spent graphite regeneration REPAIR Temperature treatment
下载PDF
Study on metal recovery process and kinetics of oxidative leaching from spent LiFePO_(4)Li-batteries
15
作者 Xiaoming Zhang Wen Xie +5 位作者 Xiaolei Zhou Wenjie Zhang Jiawei Wen Xin Wang Guoyong Huang Shengming Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期94-102,共9页
A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in th... A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry. 展开更多
关键词 spent LiFePO_(4)Li-batteries Oxidative leaching Kinetic study Life cycle assessment
下载PDF
Associations of Time Spent on Study and Sleep with Anxiety and Depressive Symptoms in Junior High School Students:Report from the Large-Scale Monitoring of Basic Education Data in China
16
作者 Hao Yao Shuzhen Chen 《International Journal of Mental Health Promotion》 2023年第9期1053-1065,共13页
In the context of the COVID-19 pandemic and under the pressure of high competitiveness for higher education in China,junior high school students’mental health is facing greater challenges.Understanding the time alloc... In the context of the COVID-19 pandemic and under the pressure of high competitiveness for higher education in China,junior high school students’mental health is facing greater challenges.Understanding the time allocation of study and sleep is necessary for developing effective prevention and treatment programs.Based on a survey of 31,057 junior high school students in 47 junior high schools in Gansu Province,China's Mainland,the study analyzed the associations of time spent on study and sleep with anxiety and depressive symptoms among junior high school students through chi-square test,ANOVA,logistic regression model and threshold regression model.It was found that 18.4%–21.1%of junior high school students had mild and above anxiety and depressive symptoms.Female junior high school students were more likely to have anxiety and depressive symptoms.In addition,time spent on study was significantly and positively associated with anxiety and depressive symptoms and time spent on sleep was significantly and negatively associated with anxiety and depressive symptoms.Late sleepers were more likely to suffer from anxiety and depressive tendencies.Reducing after-school study time appropriately and getting more sleep are beneficial in reducing anxiety and depression,but it is more important to ensure time of sleep.For the reduction of anxiety and depressive symptoms,the maximum time spent on study after school should not exceed 1.92 h,the minimum time spent on sleep at night should be more than 7 h and a 40-min lunch break should be guaranteed at noon. 展开更多
关键词 Time spent on study time spent on sleep anxiety and depressive symptoms threshold regression
下载PDF
Upcycling of spent LiCoO_(2) cathodes via nickel- and manganese-doping 被引量:7
17
作者 Nianji Zhang Wenjing Deng +1 位作者 Zhixiao Xu Xiaolei Wang 《Carbon Energy》 SCIE CAS CSCD 2023年第1期247-256,共10页
Direct recycling has been regarded as one of the most promising approaches to dealing with the increasing amount of spent lithium‐ion batteries(LIBs).However,the current direct recycling method remains insufficient t... Direct recycling has been regarded as one of the most promising approaches to dealing with the increasing amount of spent lithium‐ion batteries(LIBs).However,the current direct recycling method remains insufficient to regenerate outdated cathodes to meet current industry needs as it only aims at recovering the structure and composition of degraded cathodes.Herein,a nickel(Ni)and manganese(Mn)co‐doping strategy has been adopted to enhance LiCoO_(2)(LCO)cathode for next‐generation high‐performance LIBs through a conventional hydrothermal treatment combined with short annealing approach.Unlike direct recycling methods that make no changes to the chemical composition of cathodes,the unique upcycling process fabricates a series of cathodes doped with different contents of Ni and Mn.The regenerated LCO cathode with 5%doping delivers excellent electrochemical performance with a discharge capacity of 160.23 mAh g^(−1) at 1.0 C and capacity retention of 91.2%after 100 cycles,considerably surpassing those of the pristine one(124.05 mAh g^(−1) and 89.05%).All results indicate the feasibility of such Ni–Mn co‐doping‐enabled upcycling on regenerating LCO cathodes. 展开更多
关键词 direct recycling lithium cobalt oxide Ni–Mn co-doping spent lithium-ion batteries upcycling
下载PDF
Oxidative exfoliation of spent cathode carbon:A two-in-one strategy for its decontamination and high-valued application 被引量:3
18
作者 Runze Chen Yuran Chen +8 位作者 Xuemin Liang Yapeng Kong Yangyang Fan Quan Liu Zhenyu Yang Feiying Tang Johnny Muya Chabu Maru Dessie Walle Liqiang Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期262-269,共8页
Spent cathode carbon(SCC)from aluminum electrolysis is a potential graphite resource.However,full use of the SCC remains a challenge,since it contains many hazardous substances(e.g.,fluoride salts,cyanides),encapsulat... Spent cathode carbon(SCC)from aluminum electrolysis is a potential graphite resource.However,full use of the SCC remains a challenge,since it contains many hazardous substances(e.g.,fluoride salts,cyanides),encapsulated within the thick carbon layers and thus posing serious environmental concerns.This work presents a chemical oxidative exfoliation route to achieve the recycling of SCC and the decontaminated SCC with high-valued graphene oxide(GO)-like carbon structures(SCC-GO)is applied as an excellent adsorbent for organic pollutants.Specifically,after the oxidative exfoliation,the embedded hazardous constituents are fully exposed,facilitating their subsequent removal by aqueous leaching.Moreover,benefiting from the enhanced specific surface areas along with abundant O-containing functional groups,the as-produced SCC-GO,shows an adsorption capacity as high as 347 mg·g^(-1)when considering methylene blue as a pollutant model,which exceeds most of the recently reported carbon-based adsorbents.Our study provides a feasible solution for the efficient recycling of hazardous carbonaceous wastes. 展开更多
关键词 Waste treatment spent cathode carbon Oxidative exfoliation Purification Recovery Adsorption
下载PDF
Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media 被引量:3
19
作者 Yingnan Yang Yingjie Yang +5 位作者 Chunlin He Yuezhou Wei Toyohisa Fujita Guifang Wang Shaojian Ma Wenchao Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期897-907,共11页
To effectively separate and recover Co(Ⅱ) from the leachate of spent lithium-ion battery cathodes,we investigated solvent extraction with quaternary ammonium salt N263 in the sodium nitrite system.NO_(2)^(-)combines ... To effectively separate and recover Co(Ⅱ) from the leachate of spent lithium-ion battery cathodes,we investigated solvent extraction with quaternary ammonium salt N263 in the sodium nitrite system.NO_(2)^(-)combines with Co(Ⅱ) to form an anion [Co(NO_(2))_(3)]^(-),and it is then extracted by N263.The extraction of Co(Ⅱ) is related to the concentration of NO_(2)^(-).The extraction efficiency of Co(Ⅱ) reaches the maximum of99.16%,while the extraction efficiencies of Ni(Ⅱ),Mn(Ⅱ),and Li(Ⅰ) are 9.27%-9.80% under the following conditions:30vol% of N263 and15vol% of iso-propyl alcohol in sulfonated kerosene,the volume ratio of the aqueous-to-organic phase is 2:1,the extraction time is 30 min,and1 M sodium nitrite in 0.1 MHNO_(3).The theoretical stages require for the Co(Ⅱ) extraction are performed in the McCabe–Thiele diagram,and the extraction efficiency of Co(Ⅱ) reaches more than 99.00% after three-stage counter-current extraction with Co(Ⅱ) concentration of 2544mg/L.When the HCl concentration is 1.5 M,the volume ratio of the aqueous-to-organic phase is 1:1,the back-extraction efficiency of Co(Ⅱ)achieves 91.41%.After five extraction and back-extraction cycles,the Co(Ⅱ) extraction efficiency can still reach 93.89%.The Co(Ⅱ) extraction efficiency in the actual leaching solution reaches 100%. 展开更多
关键词 COBALT N263 sodium nitrite EXTRACTION iso-propyl alcohol spent lithium-ion battery
下载PDF
Recovery of Li_(2)CO_(3)and FePO_(4)from spent LiFePO_(4)by coupling technics of isomorphic substitution leaching and solvent extraction 被引量:2
20
作者 Yong Niu Xiaowu Peng +4 位作者 Jinfeng Li Yuze Zhang Fugen Song Dong Shi Lijuan Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期306-315,共10页
Efficient and low-cost recycling of spent lithium iron phosphate(LiFePO_(4),LFP)batteries has become an inevitable trend.In this study,an integrated closed-loop recycling strategy including isomorphic substitution lea... Efficient and low-cost recycling of spent lithium iron phosphate(LiFePO_(4),LFP)batteries has become an inevitable trend.In this study,an integrated closed-loop recycling strategy including isomorphic substitution leaching and solvent extraction process for spent LFP was proposed.An inexpensive FeCl_(3)was used as leaching agent to directly substitute Fe^(2+)from LFP.99%of Li can be rapidly leached in just 30 min,accompanied by 98%of FePO_(4)precipitated in lixivium.The tri-n-butyl phosphate(TBP)-sulfonated kerosene(SK)system was applied to extract Li from lixivium through a twelve-stage countercurrent process containing synchronous extraction and stepwise stripping of Li^(+)and Fe^(3+).80.81%of Li can be selectively enriched in stripping liquor containing 3.059 mol·L^(-1)of Li^(+)under optimal conditions.And the Fe stripping liquor was recovered for LFP re-leaching,of which,Fe^(2+)was oxidized to Fe^(3+)by appropriate H_(2)O_(2).Raffinate and lixivium were concentrated and entered into extraction process to accomplished closeloop recycling process.Overall,the results suggest that more than 99%of Li was recovered.FeCl_(3)holding in solution was directly regenerated without any pollutant emission.The sustainable mothed would be an alternative candidate for total element recycling of spent LFP batteries with industrial potential. 展开更多
关键词 spent LiFePO_(4) Leaching lithium Extraction STRIPPING RECOVERY
下载PDF
上一页 1 2 171 下一页 到第
使用帮助 返回顶部