The porphyry copper belt in the Geza island arc in southwestern China is the only Indosinian porphyry copper metallogenic belt that has been discovered and evaluated so far.The Pulang porphyry copper deposit(also refe...The porphyry copper belt in the Geza island arc in southwestern China is the only Indosinian porphyry copper metallogenic belt that has been discovered and evaluated so far.The Pulang porphyry copper deposit(also referred to as the Pulang deposit)in this area has proven copper reserves of 5.11×106 t.This deposit has been exploited on a large scale using advanced mining methods,exhibiting substantial economic benefit.Based on many research results of previous researchers and the authors’team,this study proposed the following key insights.(1)The Geza island arc was once regarded as an immature island arc with only andesites and quartz diorite porphyrites occurring.This understanding was overturned in this study.Acidic endmember components such as quartz monzonite porphyries and quartz monzonite porphyries have been identified in the Geza island arc,and the mineralization is mainly related to the magmatism of quartz monzonite porphyries.(2)Complete porphyry orebodies and large vein orebodies have developed in the Pulang deposit.Main orebody KT1 occurs in the transition area between the potassium silicate alteration zone of quartz monzonite porphyries and the sericite-quartz alteration zone.Most of them have developed in the potassium silicate alteration zone.The main orebody occurs as large lenses at the top of the hanging wall of rock bodies,with an engineering-controlled length of 1920 m and thickness of 32.5‒630.29 m(average:187.07 m).It has a copper grade of 0.21%-1.56%(average:0.42%)and proven copper resources of 5.11×10^(6) t,which are associated with 113 t of gold,1459 t of silver,and 170×10^(3) t of molybdenum.(3)Many studies on diagenetic and metallogenic chronology,isotopes,and fluid inclusions have been carried out for the Pulang deposit,including K-Ar/Ar-Ar dating of monominerals(e.g.,potassium feldspars,biotites,and amphiboles),zircon U-Pb dating,and molybdenite Re-Os dating.The results show that the porphyries in the Pulang deposit are composite plutons and can be classified into pre-mineralization quartz diorite porphyrites,quartz monzonite porphyries formed during the mineralization,and post-mineralization granite porphyries,which were formed at 223±3.7 Ma,218±4 Ma,and 207±3.9 Ma,respectively.The metallogenic age of the Pulang deposit is 213‒216 Ma.(4)The petrogeochemical characteristics show that the Pulang deposit has the characteristics of volcanic arc granites.The calculation results of trace element contents in zircons show that quartz monzonite porphyries and granite porphyries have higher oxygen fugacity.The isotopic tracing results show that the diagenetic and metallogenic materials were derived from mixed crust-and mantle-derived magmas.展开更多
We explore the time evolution law of a two-mode squeezed light field(pure state)passing through twin diffusion channels,and we find that the final state is a squeezed chaotic light field(mixed state)with entanglement,...We explore the time evolution law of a two-mode squeezed light field(pure state)passing through twin diffusion channels,and we find that the final state is a squeezed chaotic light field(mixed state)with entanglement,which shows that even though the two channels are independent of each other,since the two modes of the initial state are entangled with each other,the final state remains entangled.Nevertheless,although the squeezing(entanglement)between the two modes is weakened after the diffusion,it is not completely removed.We also highlight the law of photon number evolution.In the calculation process used in this paper,we make full use of the summation method within the ordered product of operators and the generating function formula for two-variable Hermite polynomials.展开更多
We operated a p-type point contact high purity germanium(PPCGe)detector(CDEX-1B,1.008 kg)in the China Jinping Underground Laboratory(CJPL)for 500.3 days to search for neutrinoless double beta(0νββ)decay of^(76)Ge.A...We operated a p-type point contact high purity germanium(PPCGe)detector(CDEX-1B,1.008 kg)in the China Jinping Underground Laboratory(CJPL)for 500.3 days to search for neutrinoless double beta(0νββ)decay of^(76)Ge.A total of 504.3 kg⋅day effective exposure data was accumulated.The anti-coincidence and the multi/single-site event(MSE/SSE)discrimination methods were used to suppress the background in the energy region of interest(ROI,1989–2089 keV for this work)with a factor of 23.A background level of 0.33 counts/(keV⋅kg⋅yr)was realized.The lower limit on the half life of^(76)Ge 0νββdecay was constrained as T_(1/2)^(0ν)>1.0×10^(23)yr(90%C.L.),corresponding to the upper limits on the effective Majorana neutrino mass:<mββ><3.2–7.5 eV.展开更多
For asymmetric plate shape,control over the hot rolling process mainly depends on the subjective judgement and personal experience of the operator as there are great deviations and much instability in hot rolling.Unfo...For asymmetric plate shape,control over the hot rolling process mainly depends on the subjective judgement and personal experience of the operator as there are great deviations and much instability in hot rolling.Unfortunately,the intrinsic mechanisms and sensitivity affecting characteristic parameters and variables in the asymmetric rolling process remain understudied.Therefore,a novel mechanism fusion data control method for slab camber in hot rolling using dimensional analysis and data-driven technique was proposed.The approach of dimensional analysis was used to establish a mathematical model and analyse the main parameters affecting the slab camber of the rough rolling.Subsequently,the established mathematical model combined with the data-driven techniques was employed to accurately predict the slab bending value.Furthermore,the superiority and effectiveness of the proposed model were demonstrated by a comparison with three regression models.Finally,the proposed control strategy was successfully applied in a 1580 mm hot rolling industrial process.The automatic control results show that the hit rate of slab cambers in different sizes from 10 to 30 mm is improved,and the quality stability of intermediate slab is significantly improved.展开更多
The rechargeable Li-CO2 battery has attracted much attention for energy storage because of the high energy density and efficient utilization of greenhouse gas. However, it's still suffered by low safety issue of liqu...The rechargeable Li-CO2 battery has attracted much attention for energy storage because of the high energy density and efficient utilization of greenhouse gas. However, it's still suffered by low safety issue of liquid electrolyte. Herein, a composite cathode consisting of CNTs and polymer electrolytes was fabricated by the insitu polymerization process for the polymer electrolyte-based solid-state Li-CO2 batteries. With the good dispersion of CNTs and polymer electrolyte, the composite cathode is covered by film-like discharge products Li2CO3.Furthermore, the Li-CO2 battery shows high reversible capacity (- 11,000 mAh·g^-1), excellent cycle stability (1000 mAb·g^-1 for 100 cycles) under low charge potential (〈 4.5 V), and outstanding rate performances at room temperature, which are much better than those of liquid electrolyte-based battery. Therefore, the polymer electrolyte-based Li-CO2 battery prepared by this strategy can be a promising candidate to meet the demands of high safety and high-performance energy storage devices.展开更多
Na_(2)TiSiO_(5)(NTSO)is a low-cost Li-ion battery anode with great application potential,such as the tetragonal NTSO(T-NTSO)with a high capacity and a low voltage.In addition to the tetragonal structure,NTSO has two o...Na_(2)TiSiO_(5)(NTSO)is a low-cost Li-ion battery anode with great application potential,such as the tetragonal NTSO(T-NTSO)with a high capacity and a low voltage.In addition to the tetragonal structure,NTSO has two other polymorphs.However,the basic understanding of the structure,ion insertion and transport mechanisms of these new materials is still lacking.Herein,we present a combined experimental and computational investigation of the tetragonal and orthorhombic NTSO to reveal the intrinsic mechanism leading to the superior electrochemical performance of T-NTSO.We determined that the insertion site with a flexible Ti^(4+)/Ti^(3+)redox pair is critical for Li+insertion stability.The large number of such flexible sites in the T-NTSO results in a higher capacity and higher ionic conductivity than those of orthorhombic polymorph.The understanding of intrinsic properties will accelerate the development and utilization of titanosilicates as the next generation low-voltage anode of Li-ion battery.展开更多
Although considerable effort has been devoted to purifying nitrogen oxides(NOx),it is still challenging to effectively reduce NOxat room temperature and ambient pressure without catalysts.In this study,as a proof-of-c...Although considerable effort has been devoted to purifying nitrogen oxides(NOx),it is still challenging to effectively reduce NOxat room temperature and ambient pressure without catalysts.In this study,as a proof-of-concept,we have for the first time demonstrated the room-temperature reduction of nitrogen dioxide(NO2)using a rechargeable lithium-nitrogen dioxide(Li-NO2)battery.The battery shows a capacity of 884 m Ah g-1 at 50 m A g-1(an actual energy density of 666 Wh kg-1)and a promising electrochemical Faraday efficiency(FE)of 67%.The unique properties of Li-NO2 rechargeable batteries not only provide a way to reduce and recycle NO2 but also highlight the potential of oxidative air pollutants as energy sources for next-generation electrochemical energy storage(EES)systems.展开更多
Energy storage devices based on organic liquid electrolyte are still suffered from safety issues. Therefore, developing the solid state batteries based on solid electrolytes is an inevitable choice because of the high...Energy storage devices based on organic liquid electrolyte are still suffered from safety issues. Therefore, developing the solid state batteries based on solid electrolytes is an inevitable choice because of the high safety. However, the practical applications of solid state batteries have been still suffered fiom some drawbacks, including the low ionic conductivity at room temperature, narrow electrochemical window, and weak chemical/electrochemical stability of solid-state electrolytes, the dendrite on metal anodes, and poor interfacial compatibility between electrodes and electrolytes.展开更多
基金jointly funded by the national key research and development program project“Strategic Mineral Information and Metallogenic Regularity of the Tethyan Metallogenic Domain”(2021YFC2901803)a project of the National Natural Science Foundation of China entitled“Geological Structure Mapping and Regional Comparative Study of the Tethyan Tectonic Domain”(92055314),International Geoscience Programme(IGCP-741)a project initiated by the China Geological Survey(DD20221910).
文摘The porphyry copper belt in the Geza island arc in southwestern China is the only Indosinian porphyry copper metallogenic belt that has been discovered and evaluated so far.The Pulang porphyry copper deposit(also referred to as the Pulang deposit)in this area has proven copper reserves of 5.11×106 t.This deposit has been exploited on a large scale using advanced mining methods,exhibiting substantial economic benefit.Based on many research results of previous researchers and the authors’team,this study proposed the following key insights.(1)The Geza island arc was once regarded as an immature island arc with only andesites and quartz diorite porphyrites occurring.This understanding was overturned in this study.Acidic endmember components such as quartz monzonite porphyries and quartz monzonite porphyries have been identified in the Geza island arc,and the mineralization is mainly related to the magmatism of quartz monzonite porphyries.(2)Complete porphyry orebodies and large vein orebodies have developed in the Pulang deposit.Main orebody KT1 occurs in the transition area between the potassium silicate alteration zone of quartz monzonite porphyries and the sericite-quartz alteration zone.Most of them have developed in the potassium silicate alteration zone.The main orebody occurs as large lenses at the top of the hanging wall of rock bodies,with an engineering-controlled length of 1920 m and thickness of 32.5‒630.29 m(average:187.07 m).It has a copper grade of 0.21%-1.56%(average:0.42%)and proven copper resources of 5.11×10^(6) t,which are associated with 113 t of gold,1459 t of silver,and 170×10^(3) t of molybdenum.(3)Many studies on diagenetic and metallogenic chronology,isotopes,and fluid inclusions have been carried out for the Pulang deposit,including K-Ar/Ar-Ar dating of monominerals(e.g.,potassium feldspars,biotites,and amphiboles),zircon U-Pb dating,and molybdenite Re-Os dating.The results show that the porphyries in the Pulang deposit are composite plutons and can be classified into pre-mineralization quartz diorite porphyrites,quartz monzonite porphyries formed during the mineralization,and post-mineralization granite porphyries,which were formed at 223±3.7 Ma,218±4 Ma,and 207±3.9 Ma,respectively.The metallogenic age of the Pulang deposit is 213‒216 Ma.(4)The petrogeochemical characteristics show that the Pulang deposit has the characteristics of volcanic arc granites.The calculation results of trace element contents in zircons show that quartz monzonite porphyries and granite porphyries have higher oxygen fugacity.The isotopic tracing results show that the diagenetic and metallogenic materials were derived from mixed crust-and mantle-derived magmas.
基金supported by the National Natural Science Foundation of China(Grant No.11775208)the Foundation for Young Talents in College of Anhui Province,China(Grant No.gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.KJ2019A0688 and KJ2020A0638)。
文摘We explore the time evolution law of a two-mode squeezed light field(pure state)passing through twin diffusion channels,and we find that the final state is a squeezed chaotic light field(mixed state)with entanglement,which shows that even though the two channels are independent of each other,since the two modes of the initial state are entangled with each other,the final state remains entangled.Nevertheless,although the squeezing(entanglement)between the two modes is weakened after the diffusion,it is not completely removed.We also highlight the law of photon number evolution.In the calculation process used in this paper,we make full use of the summation method within the ordered product of operators and the generating function formula for two-variable Hermite polynomials.
基金Supported by the National Key Research and Development Program of China(2017YFA0402201,2022YFA1604701,2022YFA1605000)the National Natural Science Foundation of China(12322511,12175112,12005111,11725522)。
文摘We operated a p-type point contact high purity germanium(PPCGe)detector(CDEX-1B,1.008 kg)in the China Jinping Underground Laboratory(CJPL)for 500.3 days to search for neutrinoless double beta(0νββ)decay of^(76)Ge.A total of 504.3 kg⋅day effective exposure data was accumulated.The anti-coincidence and the multi/single-site event(MSE/SSE)discrimination methods were used to suppress the background in the energy region of interest(ROI,1989–2089 keV for this work)with a factor of 23.A background level of 0.33 counts/(keV⋅kg⋅yr)was realized.The lower limit on the half life of^(76)Ge 0νββdecay was constrained as T_(1/2)^(0ν)>1.0×10^(23)yr(90%C.L.),corresponding to the upper limits on the effective Majorana neutrino mass:<mββ><3.2–7.5 eV.
基金financially supported by the National Key Research and Development Plan(Grant No.2020YFB1713600)Xinjiang Science and Technology Assistance Program(Grant No.2021E02060)+1 种基金the National Natural Science Foundation of China(Grant No.51975043)the Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-20-105A1).
文摘For asymmetric plate shape,control over the hot rolling process mainly depends on the subjective judgement and personal experience of the operator as there are great deviations and much instability in hot rolling.Unfortunately,the intrinsic mechanisms and sensitivity affecting characteristic parameters and variables in the asymmetric rolling process remain understudied.Therefore,a novel mechanism fusion data control method for slab camber in hot rolling using dimensional analysis and data-driven technique was proposed.The approach of dimensional analysis was used to establish a mathematical model and analyse the main parameters affecting the slab camber of the rough rolling.Subsequently,the established mathematical model combined with the data-driven techniques was employed to accurately predict the slab bending value.Furthermore,the superiority and effectiveness of the proposed model were demonstrated by a comparison with three regression models.Finally,the proposed control strategy was successfully applied in a 1580 mm hot rolling industrial process.The automatic control results show that the hit rate of slab cambers in different sizes from 10 to 30 mm is improved,and the quality stability of intermediate slab is significantly improved.
基金financially supported by the National Natural Science Foundation of China(Nos.51622202,U1507107,21503009 and 21603009)Beijing Natural Science Foundation(B)(No.KZ201610005003)+1 种基金Guangdong Science and Technology Project(No.2016B010114001)the Funding Projects for ‘‘Thousand Youth Talents Plan’’
文摘The rechargeable Li-CO2 battery has attracted much attention for energy storage because of the high energy density and efficient utilization of greenhouse gas. However, it's still suffered by low safety issue of liquid electrolyte. Herein, a composite cathode consisting of CNTs and polymer electrolytes was fabricated by the insitu polymerization process for the polymer electrolyte-based solid-state Li-CO2 batteries. With the good dispersion of CNTs and polymer electrolyte, the composite cathode is covered by film-like discharge products Li2CO3.Furthermore, the Li-CO2 battery shows high reversible capacity (- 11,000 mAh·g^-1), excellent cycle stability (1000 mAb·g^-1 for 100 cycles) under low charge potential (〈 4.5 V), and outstanding rate performances at room temperature, which are much better than those of liquid electrolyte-based battery. Therefore, the polymer electrolyte-based Li-CO2 battery prepared by this strategy can be a promising candidate to meet the demands of high safety and high-performance energy storage devices.
基金financially supported by Beijing Youth Scholar Program(No.PXM2021_014204_000023)Beijing Natural Science Foundation(No.JQ19003)the National Natural Science Foundation of China(Nos.22002004 and 22075007)。
文摘Na_(2)TiSiO_(5)(NTSO)is a low-cost Li-ion battery anode with great application potential,such as the tetragonal NTSO(T-NTSO)with a high capacity and a low voltage.In addition to the tetragonal structure,NTSO has two other polymorphs.However,the basic understanding of the structure,ion insertion and transport mechanisms of these new materials is still lacking.Herein,we present a combined experimental and computational investigation of the tetragonal and orthorhombic NTSO to reveal the intrinsic mechanism leading to the superior electrochemical performance of T-NTSO.We determined that the insertion site with a flexible Ti^(4+)/Ti^(3+)redox pair is critical for Li+insertion stability.The large number of such flexible sites in the T-NTSO results in a higher capacity and higher ionic conductivity than those of orthorhombic polymorph.The understanding of intrinsic properties will accelerate the development and utilization of titanosilicates as the next generation low-voltage anode of Li-ion battery.
基金financial support from the National Science Fund for Distinguished Young Scholars, China (51525204)the National Natural Science Foundation of China (51602220 and U1710109)
文摘Although considerable effort has been devoted to purifying nitrogen oxides(NOx),it is still challenging to effectively reduce NOxat room temperature and ambient pressure without catalysts.In this study,as a proof-of-concept,we have for the first time demonstrated the room-temperature reduction of nitrogen dioxide(NO2)using a rechargeable lithium-nitrogen dioxide(Li-NO2)battery.The battery shows a capacity of 884 m Ah g-1 at 50 m A g-1(an actual energy density of 666 Wh kg-1)and a promising electrochemical Faraday efficiency(FE)of 67%.The unique properties of Li-NO2 rechargeable batteries not only provide a way to reduce and recycle NO2 but also highlight the potential of oxidative air pollutants as energy sources for next-generation electrochemical energy storage(EES)systems.
文摘Energy storage devices based on organic liquid electrolyte are still suffered from safety issues. Therefore, developing the solid state batteries based on solid electrolytes is an inevitable choice because of the high safety. However, the practical applications of solid state batteries have been still suffered fiom some drawbacks, including the low ionic conductivity at room temperature, narrow electrochemical window, and weak chemical/electrochemical stability of solid-state electrolytes, the dendrite on metal anodes, and poor interfacial compatibility between electrodes and electrolytes.