期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
在两步CeO_(2)修饰的多孔YSZ-Al_(2)O_(3)管上制备高渗透性和热稳定性Pd膜 被引量:1
1
作者 杨宇昕 李新中 +4 位作者 梁骁 陈瑞润 郭景杰 傅恒志 刘冬梅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2023年第11期3439-3451,共13页
采用化学镀技术在经过不同修饰方式后的多孔YSZ-Al_(2)O_(3)管上沉积Pd膜。采用SEM、AFM、XRD和气体渗透测试方法研究不同修饰方式对多孔YSZ-Al_(2)O_(3)管表面质量及Pd复合膜渗透性能的影响。结果表明,经两步CeO_(2)修饰后,多孔YSZ-Al_... 采用化学镀技术在经过不同修饰方式后的多孔YSZ-Al_(2)O_(3)管上沉积Pd膜。采用SEM、AFM、XRD和气体渗透测试方法研究不同修饰方式对多孔YSZ-Al_(2)O_(3)管表面质量及Pd复合膜渗透性能的影响。结果表明,经两步CeO_(2)修饰后,多孔YSZ-Al_(2)O_(3)管表面具有更小的孔径分布和粗糙度。经两步CeO_(2)修饰后的多孔管上沉积的Pd膜在500℃、700 kPa压差下具有更高的氢渗透流量(0.549 mol·m^(-2)·s^(-1))和H_(2)/N2选择性(14241)。不同热循环测试和1000h持久渗透测试结果表明,在经两步CeO_(2)修饰后的多孔管上沉积的Pd膜具有较高的渗透稳定性。 展开更多
关键词 氢分离 PD膜 多孔管 表面修饰 CeO_(2)
下载PDF
添加Fe元素改善TiAl-Nb合金的显微组织和力学性能 被引量:3
2
作者 杨勇 冯和平 +4 位作者 王琪 陈瑞润 郭景杰 丁宏升 苏彦庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第5期1315-1324,共10页
为了提高TiAl-Nb合金的力学性能并优化合金成分,熔炼制备不同含Fe量(0,0.3,0.5,0.7,0.9和1.1,摩尔分数,%)Ti46Al5Nb0.1B合金试样,系统研究合金的宏观/显微组织及压缩力学性能。结果表明,Fe元素能细化晶粒、加重枝晶间的铝偏析并在枝晶... 为了提高TiAl-Nb合金的力学性能并优化合金成分,熔炼制备不同含Fe量(0,0.3,0.5,0.7,0.9和1.1,摩尔分数,%)Ti46Al5Nb0.1B合金试样,系统研究合金的宏观/显微组织及压缩力学性能。结果表明,Fe元素能细化晶粒、加重枝晶间的铝偏析并在枝晶间形成富铁B2相。室温压缩实验结果表明,合金Ti46Al5Nb0.3Fe0.1B具有最高的极限压缩强度和断裂应变,分别为1869.5 MPa和33.53%。晶粒细化及Fe元素的固溶强化能提高合金的压缩强度,γ相晶胞四方度降低及晶粒细化能提高合金的断裂应变;然而,添加过量Fe元素导致的铝偏析会降低合金的压缩强度和断裂应变。 展开更多
关键词 TIAL合金 FE B2相 显微组织 力学性能
下载PDF
Zr对二元钛铝合金组织和力学性能的影响(英文) 被引量:2
3
作者 陈瑞润 赵晓叶 +4 位作者 杨勇 郭景杰 丁宏升 苏彦庆 傅恒志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第9期1724-1734,共11页
采用非自耗真空电弧熔炼炉制备不同Zr含量的Ti43Al与Ti47Al合金,研究该合金的显微组织和力学性能的变化。结果表明:Zr对Ti43Al合金的组织形态无明显影响,Ti47Al合金则由枝晶组织演变成等轴晶组织。Zr元素的添加能细化晶粒。Zr能促进γ... 采用非自耗真空电弧熔炼炉制备不同Zr含量的Ti43Al与Ti47Al合金,研究该合金的显微组织和力学性能的变化。结果表明:Zr对Ti43Al合金的组织形态无明显影响,Ti47Al合金则由枝晶组织演变成等轴晶组织。Zr元素的添加能细化晶粒。Zr能促进γ相的形成,Zr在Ti43Al和Ti47Al合金γ相中的固溶度分别为12.0%和5.0%(摩尔分数)。经过分析,Ti43Al-x Zr中的γ相由β相转化而来,Ti47Al-x Zr中的γ相则由α相转化而来。细晶强化和固溶强化作用使压缩强度提高;然而,严重的显微偏析会导致力学性能下降。Zr元素极大的固溶度对合金的塑性具有不利的影响。Ti43Al-x Zr和Ti47Al-x Z合金的最大压缩强度分别为1684.82MPa(x=5.0%)和2158.03MPa(x=0.5%),而Ti43Al-x Zr合金的压缩应变无明显变化,Ti47Al-x Zr合金的最大压缩率为35.24%(x=0.5%)。两组合金均呈脆性断裂特征。 展开更多
关键词 TiAl二元合金 ZR 显微组织演变 相转变 压缩性能
下载PDF
行波磁场耦合顺序凝固改善ZL205A大型薄壁件缺陷及性能 被引量:2
4
作者 罗磊 夏宏营 +5 位作者 骆良顺 苏彦庆 蔡超军 王亮 郭景杰 傅恒志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第4期865-877,共13页
利用行波磁场耦合顺序凝固连续地处理大型薄壁ZL205A合金铸件,消除收缩缺陷,提高力学性能。实验结合模拟,针对行波磁场参数优化对补缩行为、显微组织和性能的影响进行系统的研究。结果表明,本研究条件下,当励磁电流为20 A、频率为200 Hz... 利用行波磁场耦合顺序凝固连续地处理大型薄壁ZL205A合金铸件,消除收缩缺陷,提高力学性能。实验结合模拟,针对行波磁场参数优化对补缩行为、显微组织和性能的影响进行系统的研究。结果表明,本研究条件下,当励磁电流为20 A、频率为200 Hz时,磁场力达到最大值;磁场力随着到磁场发生器距离越近而越大,更有利于对薄壁铸件进行处理。行波磁场可以有效破碎二次枝晶臂和枝晶间的搭接,拓宽补缩通道,延长补缩时间,优化补缩路径,最终消除收缩缺陷并提高力学性能。当励磁电流为20 A时,铸态合金极限抗拉强度、伸长率和显微硬度分别由186 MPa、7.3%和82.1 kg/mm^(2)提高至221 MPa、11.7%和100.5 kg/mm^(2),孔隙率由1.71%降至0.22%,断裂模式由脆性转变为韧性断裂。 展开更多
关键词 ZL205A合金 大型薄壁合金铸件 行波磁场 顺序凝固 收缩缺陷 力学性能
下载PDF
Microstructures,micro-segregation and solidification path of directionally solidified Ti-45Al-5Nb alloy 被引量:7
5
作者 Liang-shun Luo Tong Liu +3 位作者 Kun Li Yan-qing Su jing-jie guo Heng-zhi Fu 《China Foundry》 SCIE 2016年第2期107-113,共7页
To investigate the effect of solidification parameters on the solidification path and microstructure evolution of Ti-45Al-5Nb(at.%) alloy, Bridgman-type directional solidification and thermodynamics calculations were ... To investigate the effect of solidification parameters on the solidification path and microstructure evolution of Ti-45Al-5Nb(at.%) alloy, Bridgman-type directional solidification and thermodynamics calculations were performed on the alloy. The microstructures, micro-segregation and solidification path were investigated.The results show that the β phase is the primary phase of the alloy at growth rates of 5-20 μm·s^(-1) under the temperature gradients of 15-20 K·mm^(-1), and the primary phase is transformed into an α phase at relatively higher growth rates(V >20 μm·s^(-1)). The mainly S-segregation and β-segregation can be observed in Ti-45Al-5Nb alloy at a growth rate of 10 μm·s^(-1) under a temperature gradient of 15 K·mm^(-1). The increase of temperature gradient to 20 K·mm^(-1) can eliminate β-segregation, but has no obvious effect on S-segregation. The results also show that 5 at.% Nb addition can expand the β phase region, increase the melting point of the alloy and induce the solidification path to become complicated. The equilibrium solidification path of Ti-45Al-5Nb alloy can be described as L L→β L+β L+β→αα+β_R β→ααα→γα+γα→α_2+γγ_R+(α_2+γ), in which β_R and γ_R mean the residual β and 展开更多
关键词 TiAl-Nb alloy directional solidification MICROSTRUCTURE MICRO-SEGREGATION solidification path
下载PDF
Effect of excitation current intensity on mechanical properties of ZL205A castings solidified under a traveling magnetic field 被引量:3
6
作者 Xue-yi Fan Liang Wang +6 位作者 Zhi-qiang Du Yan-qing Su Jian-bing Zhang Liang-shun Luo Zu-chuan Liu Da-ming Xu jing-jie guo 《China Foundry》 SCIE CAS 2015年第3期196-201,共6页
The effect of excitation current intensity on the mechanical properties of ZL205 A castings solidified under a traveling magnetic field was studied. The results of the experiment indicate that the excitation current i... The effect of excitation current intensity on the mechanical properties of ZL205 A castings solidified under a traveling magnetic field was studied. The results of the experiment indicate that the excitation current intensity of the traveling magnetic field has a great influence on the mechanical properties of the ZL205 A castings. When the excitation current intensity is 15 A, the tensile strength and elongation of ZL205 A alloy castings increase 27.2% and 67.7%, respectively, compared with those of the same alloy solidified under gravity. The improvement of mechanical properties is attributed to the decrease of micro-porosity in the alloy. Under the traveling magnetic field, the feeding pressure in the alloy melt before solidification can be enhanced due to the electromagnetic force. Moreover, the melt flow induced by the traveling magnetic field can decrease the temperature gradient. The feeding resistance will be increased because the temperature gradient decrease. So traveling magnetic field has an optimum effect on feeding. 展开更多
关键词 合金铸件 运动磁场 电流强度 机械性能 凝固 励磁 温度梯度 拉伸强度
下载PDF
Microstructure and properties of novel quinary multi-principal element alloys with refractory elements 被引量:3
7
作者 Na-na guo Liang Wang +4 位作者 Yan-qing Su Liang-shun Luo Xin-zhong Li jing-jie guo Heng-zhi Fu 《China Foundry》 SCIE CAS 2015年第5期319-325,共7页
Five equiatomic alloys(Ti Zr Hf VNb, Ti Zr Hf VTa, Ti Zr Nb Mo V, Ti Zr Hf Mo V and Zr Nb Mo Hf V) composed of five elements with high melting temperature, respectively were prepared by arc-melting to develop a novel ... Five equiatomic alloys(Ti Zr Hf VNb, Ti Zr Hf VTa, Ti Zr Nb Mo V, Ti Zr Hf Mo V and Zr Nb Mo Hf V) composed of five elements with high melting temperature, respectively were prepared by arc-melting to develop a novel high temperature alloy. The five alloys exhibit different dendritic and interdendritic morphologies. The Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys formed disordered solid solution phases with body-centered cubic structure, and exhibited high compressive strength and good plasticity. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are composed with Laves phase(Hf Mo2) and disordered solid solution phases with body-centered cubic structure. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are harder and more brittle than the other three alloys due to the existence of hard and brittle Laves phases. At high temperatures, the strength decreases to below 300 MPa for the Ti Zr Hf VNb and Ti Zr Hf Mo V alloys. Solution strengthening is the primary strengthening mechanism of the Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys, and brittle Laves phase is the main cause for the low ductility of the Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys. 展开更多
关键词 high temperature alloys high-entropy alloy crystal structure and microstructure HARDNESS compressive property
下载PDF
Microstructural evolution of Al-Cu-Li alloys with different Li contents by coupling of near-rapid solidification and two-stage homogenization treatment 被引量:3
8
作者 Lei Luo Liang-shun Luo +5 位作者 Zhi-ping Li Hong-ying Xia Yan-qing Su Liang Wang jing-jie guo Heng-zhi Fu 《China Foundry》 SCIE 2020年第3期190-197,共8页
Microstructural improvement of Al-Cu-Li alloys with high Li content plays a critical role for the acquisition of excellent mechanical properties and ultra-low density.In this regard,the Al-Cu-Li alloy castings with hi... Microstructural improvement of Al-Cu-Li alloys with high Li content plays a critical role for the acquisition of excellent mechanical properties and ultra-low density.In this regard,the Al-Cu-Li alloy castings with high Li content from 1.5 wt.%to 4.5 wt.%were prepared by near-rapid solidification,followed by two-stage homogenization treatment(490℃/16 h and 530℃/16 h).The microstructural evolution and solidification behavior of the as-cast and homogenized alloys with different Li contents were systematically studied by combining experiments with calculations by Pandat software.The results indicate that with the increase of Li content,the grain sizes decrease,the solution ability of Cu in the matrixα-Al phase increases,while the content of secondary dendrites increases and the precipitated phases change from low melting point phases to high melting point phases under the near-rapid solidification.Additionally,by the coupling of near-rapid solidification and two-stage homogenization,the metastable precipitated phases(Al7Cu4Li and AlCu3)can be dissolved effectively in the alloys with Li content of 1.5 wt.%-2.5 wt.%;moreover,the stable precipitated phases(Al6CuLi3 and Al2CuLi)uniformly distribute at the grain boundaries in the alloys with Li content of 3.5 wt.%-4.5 wt.%.As a result,the refined and homogenized microstructure can be obtained. 展开更多
关键词 Al-Cu-Li alloys ultra-low density near-rapid solidification two-stage homogenization treatment microstructural evolution
下载PDF
A high-Nb TiAl alloy with highly refined microstructure and excellent mechanical properties fabricated by electromagnetic continuous casting 被引量:3
9
作者 Yong-zhe Wang Hong-sheng Ding +3 位作者 Rui-run Chen jing-jie guo Heng-zhi Fu Jin-peng Lu 《China Foundry》 SCIE 2016年第5期342-345,共4页
In the present research, microstructure refinement of a high-Nb TiAl alloy(Ti-48Al-8Nb-0.15B) was realized by means of the electromagnetic continuous casting(EMCC) technique. The microstructure of an ingot obtained by... In the present research, microstructure refinement of a high-Nb TiAl alloy(Ti-48Al-8Nb-0.15B) was realized by means of the electromagnetic continuous casting(EMCC) technique. The microstructure of an ingot obtained by EMCC was analyzed using scanning electron microscopy(SEM). As compared with the raw as-cast al oy, the obtained EMCC alloy presented a much finer microstructure with lamellar colonies with a mean size of about 50-70 μm because the electromagnetic stirring broke initial dendrites and enhanced the heterogeneous nucleation. As the grains were refined, the properties of the TiAl alloy were improved significantly. This implies that the EMCC technique could offer the possibility of application for high-Nb TiAl alloys with a refined microstructure and excel ent properties to be used as a structural material. 展开更多
关键词 high-Nb TiAl alloy MICROSTRUCTURE electromagnetic continuous casting mechanical properties
下载PDF
Microstructure and mechanical properties of Ni3Al intermetallics prepared by directional solidification electromagnetic cold crucible technique 被引量:2
10
作者 Hong-sheng Ding guo-tian Wang +2 位作者 Rui-run Chen jing-jie guo Heng-zhi 《China Foundry》 SCIE 2017年第3期169-175,共7页
The present work focused on the Ni_3Al-based alloy with a high melting point. The aim of the research is to study the effect of withdrawal rate on the microstructures and mechanical properties of directionally solidif... The present work focused on the Ni_3Al-based alloy with a high melting point. The aim of the research is to study the effect of withdrawal rate on the microstructures and mechanical properties of directionally solidified Ni-25 Al alloy. Ni_3 Al intermetallics were prepared at different withdrawal rates by directional solidification(DS) in an electromagnetic cold crucible directional solidification furnace. The DS samples contain Ni_3 Al and Ni Al phases. The primary dendritic spacing(λ) decreases with the increasing of withdrawal rate(V), and the volume fraction of Ni Al phase increases as the withdrawal rate increases. Results of tensile tests show that ductility of DS samples is enhanced with a decrease in the withdrawal rate. 展开更多
关键词 金属间化合 方向性的团结 微观结构 机械性质 骨折 TG146.23 A
下载PDF
Effect of growth rate on microstructure and microhardness of directionally solidified Ti-44Al-5Nb-1.5Cr-1.5Zr-1Mo-0.1B alloy 被引量:2
11
作者 Zhi-ping Li Hong-ying Xia +5 位作者 Liang-shun Luo Bin-bin Wang Liang Wang Yan-qing Su jing-jie guo Heng-zhi Fu 《China Foundry》 SCIE 2020年第4期293-300,共8页
The effect of growth rates (V=2-50 μm·s-1) on microstructure and microhardness of directionally solidified Ti-44Al-5Nb-1.5Cr-1.5Zr-1Mo-0.1B (at.%) alloy at a constant temperature gradient (G=18 K·mm-1) was ... The effect of growth rates (V=2-50 μm·s-1) on microstructure and microhardness of directionally solidified Ti-44Al-5Nb-1.5Cr-1.5Zr-1Mo-0.1B (at.%) alloy at a constant temperature gradient (G=18 K·mm-1) was investigated. Results indicated that β phase was the primary phase of the directionally solidified Ti-44Al-5Nb-1.5Cr-1.5Zr-1Mo-0.1B alloy. As the growth rate increases, the solid/liquid interface turns from cellular growth to dendric growth. The interlamellar spacing (λs) decreases with the increase of growth rate according to the relationship of λs=3.39V -0.31. The solidification segregation occurs due to the enrichment of β-stabilizing element Nb, Cr in primary β phase during solidification;moreover, the degree of the segregation increases with the growth rate, resulting in the emergence of B2 phase in lamellar colonies at high growth rates. The microhardness (Hv) grows with the growth rate based on the equation of HV=328.69V 0.072, which mainly attributes to the microstructure refinement. 展开更多
关键词 beta-solidifying TiAl alloys directional solidification microstructure evolution microstructure control MICROHARDNESS
下载PDF
Dependency of microstructure and microhardness on withdrawal rate of Ti-43Al-2Cr-2Nb alloy prepared by electromagnetic cold crucible directional solidification 被引量:2
12
作者 Yong-zhe Wang Hong-sheng Ding +2 位作者 Rui-run Chen jing-jie guo Heng-zhi Fu 《China Foundry》 SCIE 2016年第4期289-293,共5页
The intermetallic Ti-43Al-2Cr-2Nb(at.%) alloy was directionally solidified in an electromagnetic cold crucible with different withdrawal rates(V) ranging from 0.2 to 1.0 mm·min^(-1), at a constant temperature gra... The intermetallic Ti-43Al-2Cr-2Nb(at.%) alloy was directionally solidified in an electromagnetic cold crucible with different withdrawal rates(V) ranging from 0.2 to 1.0 mm·min^(-1), at a constant temperature gradients(G=18 K·mm^(-1)). Macrostructures of the alloy were observed by optical microscopy. Microstructures of the alloy were characterized by scanning electron microscopy(SEM) in back-scattered electron mode and transmission electron microscopy. Results showed that morphologies of macrostructure depend greatly on the applied withdrawal rate. Continuous columnar grains can be obtained under slow withdrawal rates ranging from 0.2 to 0.6 mm·min^(-1). The microstructure of the alloy was composed of α_2/γ lamellar structures and a small number of mixtures of B2 phases and blocky γ phases. The columnar grain size(d) and interlamellar spacing(λ) decrease with an increasing withdrawal rate. The effect of withdrawal rate on microhardness was also investigated. The microhardness of the directional y solidified Ti-43Al-2Cr-2Nb alloy increases with an increase in withdrawal rate. This is mainly attributed to the increase of B2 and α_2 phases as well as the refinement of lamellae. 展开更多
关键词 TiAl-based alloys directional solidification MICROSTRUCTURE MICROHARDNESS
下载PDF
Influence of laser parameters on segregation of Nb during selective laser melting of Inconel 718 被引量:1
13
作者 Liang Wang Ran Cui +5 位作者 Bin-qiang Li Xue Jia Long-hui Yao Yan-qing Su jing-jie guo Tong Liu 《China Foundry》 SCIE CAS 2021年第4期379-388,共10页
A transient three-dimensional powder-scale model was established for understanding the flow field and mass transfer within the molten pool during the selective laser melting(SLM)of Inconel 718 alloy by considering som... A transient three-dimensional powder-scale model was established for understanding the flow field and mass transfer within the molten pool during the selective laser melting(SLM)of Inconel 718 alloy by considering some important physical phenomena,such as,a transition from powder to solid,nonlinearities produced by temperature-dependent materials’properties,and fluid flow in the calculation.The influence of laser power or scanning speed on the flow field and cooling rate was discussed in detail.The simulation results reveal that the motion of molten pool and higher cooling rate promote the mass transfer and benefit the solute distribution by increasing laser power.However,with increasing the scanning speed,the melt flow speed and cooling rate are elevated,resulting in an agglomeration of the solute elements,which is ascribed to the shorter dwelling time of liquid.Therefore,the segregation of Nb can be effectively suppressed by increasing laser power or decreasing scanning speed,which can decrease the dwelling time of liquid. 展开更多
关键词 selective laser melting Inconel 718 alloy flow field mass transfer SEGREGATION
下载PDF
Effect of boron on microstructure and mechanical properties of cast Ti-44Al6-Nb ingots 被引量:1
14
作者 Jian-chong Li Rui-run Chen +3 位作者 Zhi-kun Ma Xiao-yu Chen Hong-sheng Ding jing-jie guo 《China Foundry》 SCIE CAS 2015年第1期9-14,共6页
In order to improve the mechanical properties of Ti Al alloys, especially the ductility at room temperature, and to study the effect of boron(B) on Ti Al alloys, different contents(0, 0.1, 0.3, 0.6, 0.9, 1.2, at.%) of... In order to improve the mechanical properties of Ti Al alloys, especially the ductility at room temperature, and to study the effect of boron(B) on Ti Al alloys, different contents(0, 0.1, 0.3, 0.6, 0.9, 1.2, at.%) of B were added into Ti-44Al-6Nb alloys to prepare ingots. The surface quality, macrostructure, microstructure, compressive properties and fracture surface of the ingots were studied. The results show that B has little influence on the surface quality except that there are some dark spots on the surface when the content of B is 0.9%. B can refine the grains. The average grain size decrease from about 0.8 mm to 0.088 mm with increasing B content. Meanwhile, the grain morphology of these ingots changes from big equiaxed grains with lamellars to fine equiaxed grains. When the content of B is 1.2%, the primary Ti B2 phase forms in the liquid phase and increases the nucleation rate, leading to further refinement of the grains. The compressive testing results show that B can increase the strength and the ductility, the compressive strength and compressibility can reach 2,037.8 MPa and 26.7% from 1,156.2 MPa and 10.2% when the boron content is 0.6%, which is resulted from grain refining and grain boundary strengthening. It is found that the compressive strength and the compressibility are relatively stable when the B content is more than 0.3%. 展开更多
关键词 BORON TiAl alloy compressive property grain refining
下载PDF
Effect of competitive crystal growth on microstructural characteristics of directionally solidified nickel-based single crystal superalloy
15
作者 Mang Xu Xiao-qi Geng +4 位作者 Xiang-long Zhang guo-huai Liu Ye Wang Zhao-dong Wang jing-jie guo 《China Foundry》 SCIE CAS 2022年第2期109-116,共8页
Directionally solidified single crystal superalloy test bars were prepared by the spiral grain selection method.The microstructural evolution and orientation characteristics of the starter block and spiral part were s... Directionally solidified single crystal superalloy test bars were prepared by the spiral grain selection method.The microstructural evolution and orientation characteristics of the starter block and spiral part were studied,and the influence of the competitive growth of crystals on the microstructural characteristics was analyzed.The results show that the divergent grain groups,with small size and randomly oriented grains,appear at the bottom of the start block due to the chilling effect,which is an important area for competitive growth.As the height of the starter block increases,the primary dendrite spacing increases,and the grain density decreases;furthermore,the proportion of grains with an orientation deflection angle less than 10°gradually increases.The<001>texture gradually becomes stronger as the height of the starter block increases,which indicates that the competitive growth of crystals gradually weakens.At the initial stage of the crystal selection in the spiral part,the obstacle of adjacent grains and spiral passage is the main working mechanism.The grains located at the inner side of the front edge of the spiral passage have the growth advantage.The single crystal screening process is achieved at about two-thirds of the spiral height,and the single crystal with the orientation deviation angle of 6.7°from the casting axis is prepared. 展开更多
关键词 directional solidification Ni-based superalloy microstructural evolution spiral grain selector single crystal
下载PDF
High-temperature deformation resistance and creep resistance of a TiAl-based alloy fabricated by cold crucible directional solidification technology
16
作者 Shu-lin Dong Xin Ding +2 位作者 Rui-run Chen jing-jie guo Heng-zhi Fu 《China Foundry》 SCIE 2020年第5期378-383,共6页
In order to improve the high-temperature deformation resistance and creep resistance of TiAl-based alloys,cold crucible directional solidification(CCDS)technology was employed.Aβ-type TiAl-based alloy with the nomina... In order to improve the high-temperature deformation resistance and creep resistance of TiAl-based alloys,cold crucible directional solidification(CCDS)technology was employed.Aβ-type TiAl-based alloy with the nominal composition of Ti44Al6Nb1Cr2V was prepared using the optimized CCDS parameters of 45 kW input power and 0.5 mm·min^-1 solidification rate.Thermo-compression testing was utilized to evaluate the hightemperature deformation resistance and creep resistance of the CCDS Ti44Al6Nb1Cr2V alloy.Results show that the CCDS Ti44Al6Nb1Cr2V alloy billets contain aligned columnar grains and a high percentage of small-angle lamellae.Thermo-compression testing results in the radial direction of the CCDS alloy show a much higher peak stress than other reported results in similar conditions.The much higher hardening exponent and deformation activation energy are obtained,corresponding to the excellent high-temperature deformation resistance and creep resistance,which are because of the hard-oriented grains,weaker stress-strain coordination capability of lamella structure and relatively more hysteretic dynamic recrystallization.Thermo-compression testing results in the longitudinal direction of the CCDS Ti44Al6Nb1Cr2V alloy show the much higher peak stress than that in the radial direction,indicating the better high-temperature deformation resistance and creep resistance attributed to the hard-oriented lamellae in this condition. 展开更多
关键词 cold crucible directional solidification TIAL thermo-compression constitutive equations MICROSTRUCTURE
下载PDF
Introduction of rare-earth element Sc in alloy design to modify wear features of dual-phase high-entropy alloy
17
作者 Hao Ren Rui-Run Chen +5 位作者 Xue-Feng Gao Tong Liu Gang Qin Yu-Lung Chiu Shi-Ping Wu jing-jie guo 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期817-828,共12页
Tailoring the alloy composition,which induces the hard secondary phase to increase hardness and strength to improve the wear features,is a feasible approach for developing wear-resistant metal materials.Here,a group o... Tailoring the alloy composition,which induces the hard secondary phase to increase hardness and strength to improve the wear features,is a feasible approach for developing wear-resistant metal materials.Here,a group of(AlCoCrFeNi)_(100–x)Sc_(x)(x=0–2.0,at%)high-entropy alloys(HEAs)are designed and the phase compositions and wear behaviors are explored.Sc-doped HEA series contain the primary body-centered cubic(BCC)and eutectic phases,in which the eutectic phase is composed of the alternately grown BCC and Laves phases.Sc addition promotes the diffusion of Ni atoms from BCC phase to form the Sc-rich Laves phase at the grain boundaries.Vickers hardness increases due to solid solution strengthening and second phase strengthening.And the second phase strengthening plays a more significant role relative to solid solution strengthening.Laves phase and the oxides caused by wear heating prevent the direct contact between friction pair and HEAs,thus inducing a decreased wear rate from 6.82×10^(−5) to 3.47×10^(−5)m^(3)·N^(−1)·m^(−1).Moreover,the wear mechanism changes from adhesive wear,abrasive wear and oxidative wear to abrasive wear and oxidative wear. 展开更多
关键词 High entropy alloy(HEA) Laves phase HARDNESS Wear mechanism
原文传递
A Hf-doped dual-phase high-entropy alloy: phase evolution and wear features
18
作者 Hao Ren Rui-Run Chen +5 位作者 Xue-Feng Gao Tong Liu Gang Qin Yu-Lung Chiu Shi-Ping Wu jing-jie guo 《Rare Metals》 SCIE EI CAS CSCD 2024年第1期324-333,共10页
Initially defined high entropy alloys(HEAs)usually exhibit a single-phase solid-solution structure.However,two and/or more types of phases in HE As possibly induce the desired microstructure features,which contribute ... Initially defined high entropy alloys(HEAs)usually exhibit a single-phase solid-solution structure.However,two and/or more types of phases in HE As possibly induce the desired microstructure features,which contribute to improving the wear properties of HE As.Here,we prepare a series of(AlCoCrFeNi)_(100-x)Hf_(x)(x=0,2,4and 6;at%) HEAs and concern their phase compositions,micro structures and wear properties.Hf leads to the formation of(Ni,Co)_(2)Hf-type Laves phase and tailors the microstructure from a body-centered cubic(BCC) singlephase structure to a hypoeutectic structure.An increased hardness from~HV 512.3 to~HV 734.1 is due to solid-solution strengthening,grain refinement strengthening and precipitated phase strengthening.And a few oxides(Al_(2)O_(3)+Cr_(2)O_(3)) caused by the wear heating contribute to an 85.5% decrease in wear rate of the HEA system from6.71×10^(-5) to 0.97×10^(-5) m^(3)·N^(-1)·m^(-1).In addition,Hf addition changes the wear mechanism from abrasive wear,mild oxidative wear and adhesive wear to oxidative wear and adhesive wear. 展开更多
关键词 High entropy alloy Laves phase HARDNESS Wear mechanism
原文传递
Microstructure and mechanical properties of Ti44Al6Nb1Cr2V alloy after gaseous hydrogen charging at 1373-1693 K
19
作者 Teng-Fei Ma Rui-Run Chen +4 位作者 De-Shuang Zheng jing-jie guo Hong-Sheng Ding Yan-Qing Su Heng-Zhi Fu 《Rare Metals》 SCIE EI CAS CSCD 2023年第2期664-671,共8页
The hydrogenation behavior of Ti44A16Nb1Cr2V(at%)alloy at temperature range of 1373-1693 K and its effect on microstructure and room-temperature mechanical properties were studied systematically in this study.The resu... The hydrogenation behavior of Ti44A16Nb1Cr2V(at%)alloy at temperature range of 1373-1693 K and its effect on microstructure and room-temperature mechanical properties were studied systematically in this study.The results show that hydrogen content increases with the increase in temperature,and the maximum hydrogen content is 0.126 wt%at 1693 K.The heat of solution of hydrogen is calculated as 82.9 kJ·mol^(-1)by curve fitting,indicating that hydrogen absorptionin TiAl alloys is endothermic.Hydrogen promotes the lamellar colony size because hydrogen promotes the diffusion of elements.Hydrogen stabilizes B2phase during hydrogenation resulting in more residual B2phase in the hydrogenated alloy.The nanohardness and elastic modulus decrease after hydrogenation due to that hydrogen weakens the bonds.The Ti44A16Nb1Cr2V alloy exhibits higher plasticity and lower flow stress hydrogenation with 0.039 wt%H,and the ultimate compressive strength decreases from 1220 to 1130 MPa,while the fracture strain is enhanced by 26%. 展开更多
关键词 TiAl alloys HYDROGENATION Hydrogen content Nanohardness Compressive property
原文传递
Microstructure and mechanical properties of Ti43Al6Nb alloys with different zirconium contents
20
作者 Xiao-Ye Zhao Rui-Run Chen +4 位作者 Yong Yang jing-jie guo Hong-Sheng Ding Yan-Qing Su Heng-Zhi Fu 《Rare Metals》 SCIE EI CAS CSCD 2023年第6期2047-2056,共10页
Ti43Al6Nb-xZr alloys with different additions of zirconium were prepared by vacuum arc melting furnace.The microstructure and compressive properties at room temperature(RT) were investigated.The microstructure shows d... Ti43Al6Nb-xZr alloys with different additions of zirconium were prepared by vacuum arc melting furnace.The microstructure and compressive properties at room temperature(RT) were investigated.The microstructure shows dendrites with addition of 0 at%-2.5at% Zr,and the dendrites are refined with the primary dendrite arms spacing decreasing from 222.64 μm(0 at%Zr) to 92.57 μm(2.0 at% Zr).With Zr addition more than2.5 at%,the microstructure shows equiaxed grains surrounded by y phase.Zr is a y stabilizer and promotes the β/y transition,resulting in the change of microstructure morphology.Zr reaches the maximum solid solubility(about 6.5 at%) in y phase with addition of 2.5 at% Zr;moreover,γ phase increases in quantity,bringing about severe micro-segregation.With addition of Zr,the remained β phase turns into ω phase with B82 structure.Ti43Al6Nb-xZr alloys show brittle fracture.The maximum compressive strength is 2161.69 MPa with addition of 2.5at% Zr and the maximum compressive strain is 30.62%with addition of 0.5 at% Zr,improving by 9.24% and7.33%,respectively.The improvement of compressive strength results from fine-grain strengthening and solution strengthening.Severe micro-segregation is bad for compressive strength,and large solubility of Zr is detrimental to ductility. 展开更多
关键词 TiAl alloys Zr Microstructure evolution MICRO-SEGREGATION Mechanical properties
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部