In Alzheimer’s disease,the transporter P-glycoprotein is responsible for the clearance of amyloid-βin the brain.Amyloid-βcorrelates with the sphingomyelin metabolism,and sphingomyelin participates in the regulation...In Alzheimer’s disease,the transporter P-glycoprotein is responsible for the clearance of amyloid-βin the brain.Amyloid-βcorrelates with the sphingomyelin metabolism,and sphingomyelin participates in the regulation of P-glycoprotein.The amyloid cascade hypothesis describes amyloid-βas the central cause of Alzheimer’s disease neuropathology.Better understanding of the change of P-glycoprotein and sphingomyelin along with amyloid-βand their potential association in the pathological process of Alzheimer’s disease is critical.Herein,we found that the expression of P-glycoprotein in APP/PS1 mice tended to increase with age and was significantly higher at 9 and 12 months of age than that in wild-type mice at comparable age.The functionality of P-glycoprotein of APP/PS1 mice did not change with age but was significantly lower than that of wild-type mice at 12 months of age.Decreased sphingomyelin levels,increased ceramide levels,and the increased expression and activity of neutral sphingomyelinase 1 were observed in APP/PS1 mice at 9 and 12 months of age compared with the levels in wild-type mice.Similar results were observed in the Alzheimer’s disease mouse model induced by intracerebroventricular injection of amyloid-β1-42 and human cerebral microvascular endothelial cells treated with amyloid-β1-42.In human cerebral microvascular endothelial cells,neutral sphingomyelinase 1 inhibitor interfered with the changes of sphingomyelin metabolism and P-glycoprotein expression and functionality caused by amyloid-β1-42 treatment.Neutral sphingomyelinase 1 regulated the expression and functionality of P-glycoprotein and the levels of sphingomyelin and ceramide.Together,these findings indicate that neutral sphingomyelinase 1 regulates the expression and function of P-glycoprotein via the sphingomyelin/ceramide pathway.These studies may serve as new pursuits for the development of anti-Alzheimer’s disease drugs.展开更多
Understanding the relationship between tree height (H) and diameter at breast height (D) is vital to forest design, monitoring and biomass estimation. We developed an allometric equation model and tested its appli...Understanding the relationship between tree height (H) and diameter at breast height (D) is vital to forest design, monitoring and biomass estimation. We developed an allometric equation model and tested its applicability for unevenly aged stands of moso bamboo forest at a regional scale. Field data were collected for 21 plots. Based on these data, we identified two strong power relationships: a corre- lation between the mean bamboo height (Hm) and the upper mean H (Hu), and a correlation between the mean D (Din) and the upper mean D (Du). Simulation results derived from the aUometric equation model were in good agreement with observed culms derived from the field data for the 21 stands, with a root-mean-square error and relative root-mean-square error of 1.40 m and 13.41%, respectively. These results demonstrate that the allometric equation model had a strong predictive power in the unevenly aged stands at a regional scale. In addition, the estimated average height-diameter (H-D) model for South Anhui Province was used to predict H for the same type of bamboo in Hunan Province based on the measured D, and the results were highly similar. The allometric equation model has multiple uses at the regional scale, including the evaluation of the variation in the H- D relationship among regions. The model describes the average H-D relationship without considering the effects caused by variation in site conditions, tree density and other factors.展开更多
The ongoing pandemic of coronavirus disease 2019(COVID-19)has been a great burden for the healthcare system in many countries because of its high transmissibility,severity,and fatality.Chest radiography and computed t...The ongoing pandemic of coronavirus disease 2019(COVID-19)has been a great burden for the healthcare system in many countries because of its high transmissibility,severity,and fatality.Chest radiography and computed tomography(CT)play a vital role in the diagnosis,detection of complications,and prognostication of COVID-19.Additionally,magnetic resonance imaging(MRI),especially multi-nuclei MRI,is another important imaging technique for disease diagnosis because of its good soft tissue contrast and the ability to conduct structural and functional imaging,which has also been used to evaluate COVID-19-related organ injuries in previous studies.Herein,we briefly reviewed the recent research on multi-nuclei MRI for evaluating injuries caused by COVID-19 and the clinical 1 H MRI techniques and their applications for assessing injuries in lungs,brain,and heart.Moreover,the emerging hyperpolarized 129Xe gas MRI and its applications in the evaluation of pulmonary structures and functional abnormalities caused by COVID-19 were also reviewed.展开更多
A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld mi...A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld microstructure and properties of DS-FSZW joint were systematically investigated.It indicated that defect-free medium-thick Al/Cu DS-FSZW joint could be achieved under an optimal welding parameter.DS-FSZW joint was prone to form void defects in the bottom of the second-pass weld.The recrystallization mechanisms at the top and middle of the weld nugget zone(WNZ)were continuous dynamic recrystallization(CDRX)and geometric dynamic recrystallization(GDRX).While the major recrystallization mechanism at the bottom of the WNZ was GDRX.DS-FSZW joint of the optimal welding condition with 850 r/min-400 mm/min was produced with a continuous thin and crack-free IMCs layer at the Al/Cu interface,and the maximum tensile strength of this joint is 160.57 MPa,which is equivalent to 65.54%of pure Cu base material.Moreover,the corrosion resistance of Al/Cu DS-FSZW joints also achieved its maximum value at the optimal welding parameter of 850 r/min-400 mm/min.It demonstrates that the DS-FSZW process can simultaneously produce medium-thick Al/Cu joints with excellent mechanical performance and corrosion resistance.展开更多
Crossed beak is a complex mode of inheritance with prevalence ranging from 0.2 to 7.4% in at least 12 chicken strains worldwide.To reveal the intrinsic factors causing crossed beaks,genes expression patterns in bilate...Crossed beak is a complex mode of inheritance with prevalence ranging from 0.2 to 7.4% in at least 12 chicken strains worldwide.To reveal the intrinsic factors causing crossed beaks,genes expression patterns in bilateral mandibular condyle between affected and normal birds were characterized by RNA sequencing analysis in the present studies.Crossed beak was induced by short length of unilateral mandibular ramus,and a total of 110differentially expressed genes were up-or down-regulated in the affected(short)mandibular condyle side as compared to the normal side.Carbonic anhydrase 2(CA2)and Carbonic anhydrase 13(CA13)were enriched in the carbonate dehydratase activity,and high-expressed in mandibular condyle and osteoblasts(P<0.05).However,both were low-expressed in short mandibular condyle side of affected birds(P<0.05).The carbonate dehydratase inhibitor experiments confirmed that there is positive association between the calcification and carbonic anhydrase isoenzymes.Quantitative analysis with cetylpyridinium chloride showed a decrease in calcification when the cells were transfected with an anti-CA13 shRNA.Our research suggested that CA2 and CA13 are down-calcified in shortside mandibular condyle,and caused mandibular ramus to grow slowly.CA2 and CA13 have the critical role in crossed beaks by regulating calcification of mandibular condyle.展开更多
Background Rosemary extract(RE)has been reported to exert antioxidant property.However,the application of RE in late-phase laying hens on egg quality,intestinal barrier and microbiota,and oviductal function has not be...Background Rosemary extract(RE)has been reported to exert antioxidant property.However,the application of RE in late-phase laying hens on egg quality,intestinal barrier and microbiota,and oviductal function has not been systematically studied.This study was investigated to detect the potential effects of RE on performance,egg quality,serum parameters,intestinal heath,cecal microbiota and metabolism,and oviductal gene expressions in late-phase laying hens.A total of 21065-week-old“Jing Tint 6”laying hens were randomly allocated into five treatments with six replicates and seven birds per replicate and fed basal diet(CON)or basal diet supplemented with chlortetracycline at 50 mg/kg(CTC)or RE at 50 mg/kg(RE50),100 mg/kg(RE100),and 200 mg/kg(RE200).Results Our results showed that RE200 improved(P<0.05)Haugh unit and n-6/n-3 of egg yolk,serum superoxide dismutase(SOD)compared with CON.No significant differences were observed for Haugh unit and n-6/n-3 of egg yolk among CTC,RE50,RE100 and RE200 groups.Compared with CTC and RE50 groups,RE200 increased serum SOD activity on d 28 and 56.Compared with CON,RE supplementation decreased(P<0.05)total cholesterol(TC)level.CTC,RE100 and RE200 decreased(P<0.05)serum interleukin-6(IL-6)content compared with CON.CTC and RE200 increased jejunal m RNA expression of ZO-1 and Occludin compared with CON.The biomarkers of cecal microbiota and metabolite induced by RE 200,including Firmicutes,Eisenbergiella,Paraprevotella,Papillibacter,and butyrate,were closely associated with Haugh unit,n-6/n-3,SOD,IL-6,and TC.PICRUSt2 analysis indicated that RE altered carbohydrate and amino acid metabolism of cecal microbiota and increased butyrate synthesizing enzymes,including 3-oxoacid Co A-transferase and butyrate-acetoacetate Co A-transferase.Moreover,transcriptomic analysis revealed that RE200 improved gene expressions and functional pathways related to immunity and albumen formation in the oviductal magnum.Conclusions Dietary supplementation with 200 mg/kg RE could increase egg quality of late-phase laying hens via modulating intestinal barrier,cecal microbiota and metabolism,and oviductal function.Overall,RE could be used as a promising feed additive to improve egg quality of laying hens at late stage of production.展开更多
A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the mai...A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.展开更多
Due to the high-pressure and low-temperature exploitation environment,the characteristics of hydrates are directly related to the safety of pipeline transportation,which is an important research topic for deep-sea flo...Due to the high-pressure and low-temperature exploitation environment,the characteristics of hydrates are directly related to the safety of pipeline transportation,which is an important research topic for deep-sea flow assurance.In this review,six kinds of extensively used experimental equipment and three types of hot computer simulation methods,which are employed to explore the hydrate characteristics under deep-sea conditions,are comprehensively summarized,covering micro to macro research scales.The experimental equipment includes rotational rheometer,flow loop,high-pressure reactor,differential scanning calorimeter(DSC),micromechanical force(MMF)testing apparatus and microscopic morphology observation(MMO)device.The computer simulation methods involve numerical simulation,molecular dynamics(MD)simulation,Monte Carlo(MC)simulation and first-principles calculation.Their advantages and disadvantages are compared in detail,and their basic principles,main applications and the latest research progress are introduced.Some suggestions for future research methods are also provided.This work aims to help readers quickly grasp the characteristics of the most used research methods,choose suitable methods for their study and further expand these methods,so as to advance the development in hydrate research area.展开更多
Phosphorus(P)is essential for living plants,and P deficiency is one of the key factors limiting the yield in rapeseed production worldwide.As the most important organ for plants,root morphology traits(RMTs)play a key ...Phosphorus(P)is essential for living plants,and P deficiency is one of the key factors limiting the yield in rapeseed production worldwide.As the most important organ for plants,root morphology traits(RMTs)play a key role in P absorption.To investigate the genetic variability of RMT under low P availability,we dissected the genetic structure of RMTs by genome-wide association studies(GWAS),linkage mapping and candidate gene association studies(CGAS).A total of 52 suggestive loci were associated with RMTs under P stress conditions in 405 oilseed rape accessions.The purple acid phosphatase gene BnPAP17 was found to control the lateral root number(LRN)and root dry weight(RDW)under low P stress.The expression of BnPAP17 was increased in shoot tissue in P-efficient cultivars compared to root tissue and P-inefficient cultivars in response to low P stress.Moreover,the haplotype of BnPAP17^(Hap3)was detected for the selective breeding of P efficiency in oilseed rape.Over-expression of the BnPAP17^(Hap3)could promote the shoot and root growth with enhanced tolerance to low P stress and organic phosphorus(Po)utilization in oilseed rape.Collectively,these findings increase our understanding of the mechanisms underlying BnPAP17-mediated low P stress tolerance in oilseed rape.展开更多
Dispersion fuels,knowned for their excellent safety performance,are widely used in advanced reactors,such as hightemperature gas-cooled reactors.Compared with deterministic methods,the Monte Carlo method has more adva...Dispersion fuels,knowned for their excellent safety performance,are widely used in advanced reactors,such as hightemperature gas-cooled reactors.Compared with deterministic methods,the Monte Carlo method has more advantages in the geometric modeling of stochastic media.The explicit modeling method has high computational accuracy and high computational cost.The chord length sampling(CLS)method can improve computational efficiency by sampling the chord length during neutron transport using the matrix chord length?s probability density function.This study shows that the excluded-volume effect in realistic stochastic media can introduce certain deviations into the CLS.A chord length correction approach is proposed to obtain the chord length correction factor by developing the Particle code based on equivalent transmission probability.Through numerical analysis against reference solutions from explicit modeling in the RMC code,it was demonstrated that CLS with the proposed correction method provides good accuracy for addressing the excludedvolume effect in realistic infinite stochastic media.展开更多
The repair and regeneration of bone defects are highly challenging orthopedic problems.Recently,Mg-based implants have gained popularity due to their unique biodegradation and elastic modulus similar to that of human ...The repair and regeneration of bone defects are highly challenging orthopedic problems.Recently,Mg-based implants have gained popularity due to their unique biodegradation and elastic modulus similar to that of human bone.The aim of our study is to develop a magnesium alloy with a controllable degradation that can closely match bone tissue to help injuries heal in vivo and avoid cytotoxicity caused by a sudden increase in ion concentration.In this study,we prepared and modified Mg-3Zn,Mg-3Zn-1Y,and Mg-2Zn-1Mn by hot extrusion,and used Mg-2.5Y-2.5Nd was as a control.We then investigated the effect of additions of Y and Mn on alloys'properties.Our results show that Mn and Y can improve not only compression strength but also corrosion resistance.The alloy Mg-2Zn-1Mn demonstrated good cytocompatibility in vitro,and for this reason we selected it for implantation in vivo.The degraded Mg-2Zn-1Mn implanted a bone defect area did not cause obvious rejection and inflammatory reaction,and the degradation products left no signs of damage to the heart,liver,kidney,or brain.Furthermore,we find that Mg-2Zn-1Mn can promote an osteoinductive response in vivo and the formation of bone regeneration.展开更多
Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator inv...Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator involved in uptake and transport of Cu via activation of OsCOPT2 and OsHMA expression.OsMYB84 was highly expressed in roots and anthers and induced by Cu.Overexpression of OsMYB84 promoted uptake and root-to-shoot translocation of Cu in rice,facilitated Cu distribution into grain and increased grain yield.In contrast,mutation of OsMYB84 reduced Cu concentration in xylem sap.OsMYB84 bound to the promoter region of OsCOPT2 and OsHMA5 and upregulated their expression.OsCOPT2 mutants showed reduced uptake of Cu and OsHMA5 overexpression lines showed increased root-to-shoot translocation of Cu.展开更多
To insight into the B-site ordering in RFe_(0.5)Cr_(0.5)O_(3)ceramics,a series of RFe_(0.5)Cr_(0.5)O_(3)ceramics(R=La,Y,Lu)were synthesized by the sol-gel method,and the structural and magnetic properties were systemi...To insight into the B-site ordering in RFe_(0.5)Cr_(0.5)O_(3)ceramics,a series of RFe_(0.5)Cr_(0.5)O_(3)ceramics(R=La,Y,Lu)were synthesized by the sol-gel method,and the structural and magnetic properties were systemically investigated.By using the Rietveld refinement of all samples,it is found that the structural distortion is increased as the R ionic radius decreases,leading to the weakened interactions between Fe/Cr ions.Moreover,the Fe and Cr are arranged in disorder in LaFe_(0.5)Cr_(0.5)O_(3),but partially ordered in YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3),showing an increasing trend of the proportion of ordered domains with the decrease of R ionic radius.Through fitting the temperature-dependent magnetizations,it is identified that the magnetization reversal(MR)in disorder LaFe_(0.5)Cr_(0.5)O_(3)is resulted from the competition between the moments of Cr and Fe sublattices.In the partially ordered YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3)ceramics,because of the presence of Fe-O-Cr networks in the ordered domains whose moment is antiparallel to that of Fe-O-Fe and Cr-O-Cr in the disordered domains,the compensation temperature T_(comp)of MR is increased by nearly 50 K.These results suggest that the changing of R-site ions could be used very effectively to modify the Fe-O-Cr ordering,apart from the structural distortion,which has a direct effect on the magnetic exchange interactions in RFe_(0.5)Cr_(0.5)O_(3)ceramics.Then at values of composition where ordered domains are expected to be larger in number as compared to disordered domains and with a weaker structural distortion,one can expect a higher transition temperature Tcomp,providing a different view for adjustment of the magnetic properties of RFe_(0.5)Cr_(0.5)O_(3)ceramics for practical applications.展开更多
The kagome system has attracted great interest in condensed matter physics due to its unique structure that canhost various exotic states such as superconductivity(SC),charge density waves(CDWs)and nontrivial topologi...The kagome system has attracted great interest in condensed matter physics due to its unique structure that canhost various exotic states such as superconductivity(SC),charge density waves(CDWs)and nontrivial topological states.The topological semimetal RbTi_(3)Bi_(5)consisting of a Ti kagome layer shares a similar crystal structure to the topologicalcorrelated materials AV_(3)Sb_(5)(A=K,Rb,Cs)but without the absence of CDW and SC.Systematic de Haas-van Alphenoscillation measurements are performed on single crystals of RbTi_(3)Bi_(5)to pursue nontrivial topological physics and exoticstates.Combining this with theoretical calculations,the detailed Fermi surface topology and band structure are investigated.A two-dimensional Fermi pocket b is revealed with a light effective mass,consistent with the semimetal predictions.TheLandau fan diagram of RbTi_(3)Bi_(5)reveals a zero Berry phase for the b oscillation in contrast to that of CsTi_(3)Bi_(5).Theseresults suggest that kagome RbTi_(3)Bi_(5)is a good candidate for exploring nontrivial topological exotic states and topologicalcorrelated physics.展开更多
To address air pollution and offer a convenient and comfortable living environment,the Chinese government launched a smart city pilot(SCP)project in 2012,accompanied by a comprehensive set of environmental and energy-...To address air pollution and offer a convenient and comfortable living environment,the Chinese government launched a smart city pilot(SCP)project in 2012,accompanied by a comprehensive set of environmental and energy-related laws and regulations.Although academic interest in smart cities has surged,there remains a notable gap in empirical research exploring the economic,environmental,and energy effects of such initiatives.Taking 232 prefecture-level cities from 2003 to 2017 as research subjects,this study measures energy effi‐ciency by using energy consumption per unit of GDP and adopts a difference-in-differences(DID)analysis to investigate the impact of SCPs on energy efficiency.The empirical results indicate that SCPs improved energy efficiency by promoting urban technological innovation capabilities and green total factor productivity,and this effect was more pronounced in cities that were more dependent on traditional fossil fuel energy sources and had more developed fiscal and financial levels.Studying the impact of smart city construction on energy utilization efficiency in developing countries,such as China,is not only significantly enlightening for China’s green and low-carbon transition but also provides reference opinions for constructing smart cities and the path to enhancing energy efficiency in other developing countries.The findings provide valuable insights into the global development of smart cities,urban sustainability,and high-quality economic growth.展开更多
Chemical doping is a critical factor in the development of new superconductors or optimizing the superconducting transition temperature(T_(c))of the parent superconducting materials.Here,a new simple urea approach is ...Chemical doping is a critical factor in the development of new superconductors or optimizing the superconducting transition temperature(T_(c))of the parent superconducting materials.Here,a new simple urea approach is developed to synthesize the N-dopedα-Mo_(2)C.Benefiting from the simple urea method,a broad superconducting dome is found in the Mo_(2)C_(1−x)N_(x)(0≤x≤0.49)compositions.X-ray diffraction results show that the structure of𝛼α-Mo_(2)C remains unchanged and there is a variation of lattice parameters with nitrogen doping.Resistivity,magnetic susceptibility,and heat capacity measurement results confirm that T_(c)was strongly increased from 2.68K(x=0)to 7.05K(x=0.49).First-principles calculations and our analysis indicate that increasing nitrogen doping leads to a rise in the density of states at the Fermi level and doping-induced phonon softening,which enhances electron–phonon coupling.This results in an increase in𝑇T_(c)and a sharp rise in the upper critical field.Our findings provide a promising strategy for fabricating transition metal carbonitrides and provide a material platform for further study of the superconductivity of transition metal carbides.展开更多
The role of lncRNA KCNQ1 opposite strand/antisense transcript 1(KCNQ1OT1)in colon cancer involves various tumorigenic processes and has been studed widely.However,the mechanism by which it promotes colon cancer remain...The role of lncRNA KCNQ1 opposite strand/antisense transcript 1(KCNQ1OT1)in colon cancer involves various tumorigenic processes and has been studed widely.However,the mechanism by which it promotes colon cancer remains unclear.Retrovirnl vector pSEB61 was retroftted in established HCT116 siKCN and SW480-siKCN cells to silence KCNQ1 OT1.Cellular proliferation was measured using CCK8 assay,and flow cytometry(FCM)detected cell cydle changes.RNA sequencing(RNA Seq)analysis showed differentially expressed genes(DEGs).Gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses were carried out to analyze enriched functions and signaling pathways.RT-qPCR,immunofluorescence,and western blotting were carried out to validate downstream gene expressions.The effects of tumorigenesis were evaluated in BALB/c nude mice by tumor xenografts.Our data revealed that the silencing of KONQ1OT1 in HCT116 and SW480 cells slowed cell growth and decreased the number of cells in the G2/M phase.RNA-Seq analysis showed the data of DEGs enriched in various GO and KEGG pathways such as DNA replication and cell cyde.RT qPCR,immunofluorescence,and western blotting confirmed downstream CCNE2 and PCNA gene expressions.HCT116 siKCN cells signifcantly suppressed tumorigenesis in BALB/c nude mice.Our study suggests that lncRNA KCNQ1OT1 may provide a promising therapeutic strategy for colon cancer.展开更多
BACKGROUND The role of Sm-like 5(LSM5)in colon cancer has not been determined.In this study,we investigated the role of LSM5 in progression of colon cancer and the potential underlying mechanism involved.AIM To determ...BACKGROUND The role of Sm-like 5(LSM5)in colon cancer has not been determined.In this study,we investigated the role of LSM5 in progression of colon cancer and the potential underlying mechanism involved.AIM To determine the role of LSM5 in the progression of colon cancer and the potential underlying mechanism involved.METHODS The Gene Expression Profiling Interactive Analysis database and the Human Protein Atlas website were used for LSM5 expression analysis and prognosis analysis.Real-time quantitative polymerase chain reaction and Western blotting were utilized to detect the expression of mRNAs and proteins.A lentivirus targeting LSM5 was constructed and transfected into colon cancer cells to silence LSM5 expression.Proliferation and apoptosis assays were also conducted to evaluate the growth of the colon cancer cells.Human GeneChip assay and bioinformatics analysis were performed to identify the potential underlying mechanism of LSM5 in colon cancer.RESULTS LSM5 was highly expressed in tumor tissue and colon cancer cells.A high expression level of LSM5 was related to poor prognosis in patients with colon cancer.Knockdown of LSM5 suppressed proliferation and promoted apoptosis in colon cancer cells.Silencing of LSM5 also facilitates the expression of p53,cyclin-dependent kinase inhibitor 1A(CDKN1A)and tumor necrosis factor receptor superfamily 10B(TNFRSF10B).The inhibitory effect of LSM5 knockdown on the growth of colon cancer cells was associated with the upregulation of p53,CDKN1A and TNFRSF10B.CONCLUSION LSM5 knockdown inhibited the proliferation and facilitated the apoptosis of colon cancer cells by upregulating p53,CDKN1A and TNFRSF10B.展开更多
基金supported by the National Key Research and Development Program of ChinaNos.2021YFC2 701800 and 2021YFC2 701805 (to QY)+2 种基金Open Research Fund of State Key Laboratory of Genetic EngineeringFudan UniversityNo.SKLGE-21 19 (to TXH and QY)
文摘In Alzheimer’s disease,the transporter P-glycoprotein is responsible for the clearance of amyloid-βin the brain.Amyloid-βcorrelates with the sphingomyelin metabolism,and sphingomyelin participates in the regulation of P-glycoprotein.The amyloid cascade hypothesis describes amyloid-βas the central cause of Alzheimer’s disease neuropathology.Better understanding of the change of P-glycoprotein and sphingomyelin along with amyloid-βand their potential association in the pathological process of Alzheimer’s disease is critical.Herein,we found that the expression of P-glycoprotein in APP/PS1 mice tended to increase with age and was significantly higher at 9 and 12 months of age than that in wild-type mice at comparable age.The functionality of P-glycoprotein of APP/PS1 mice did not change with age but was significantly lower than that of wild-type mice at 12 months of age.Decreased sphingomyelin levels,increased ceramide levels,and the increased expression and activity of neutral sphingomyelinase 1 were observed in APP/PS1 mice at 9 and 12 months of age compared with the levels in wild-type mice.Similar results were observed in the Alzheimer’s disease mouse model induced by intracerebroventricular injection of amyloid-β1-42 and human cerebral microvascular endothelial cells treated with amyloid-β1-42.In human cerebral microvascular endothelial cells,neutral sphingomyelinase 1 inhibitor interfered with the changes of sphingomyelin metabolism and P-glycoprotein expression and functionality caused by amyloid-β1-42 treatment.Neutral sphingomyelinase 1 regulated the expression and functionality of P-glycoprotein and the levels of sphingomyelin and ceramide.Together,these findings indicate that neutral sphingomyelinase 1 regulates the expression and function of P-glycoprotein via the sphingomyelin/ceramide pathway.These studies may serve as new pursuits for the development of anti-Alzheimer’s disease drugs.
基金financially supported by the Special Fund for Basic Scientific Research of International Centre for Bamboo and Rattan(1632014003)National Natural Science Foundation of China(31101148 and 31300177)
文摘Understanding the relationship between tree height (H) and diameter at breast height (D) is vital to forest design, monitoring and biomass estimation. We developed an allometric equation model and tested its applicability for unevenly aged stands of moso bamboo forest at a regional scale. Field data were collected for 21 plots. Based on these data, we identified two strong power relationships: a corre- lation between the mean bamboo height (Hm) and the upper mean H (Hu), and a correlation between the mean D (Din) and the upper mean D (Du). Simulation results derived from the aUometric equation model were in good agreement with observed culms derived from the field data for the 21 stands, with a root-mean-square error and relative root-mean-square error of 1.40 m and 13.41%, respectively. These results demonstrate that the allometric equation model had a strong predictive power in the unevenly aged stands at a regional scale. In addition, the estimated average height-diameter (H-D) model for South Anhui Province was used to predict H for the same type of bamboo in Hunan Province based on the measured D, and the results were highly similar. The allometric equation model has multiple uses at the regional scale, including the evaluation of the variation in the H- D relationship among regions. The model describes the average H-D relationship without considering the effects caused by variation in site conditions, tree density and other factors.
基金This work is supported by National key Research and Development Project of China(grant no.2018YFA0704000)National Natural Science Foundation of China(grant no.91859206,81625011,21921004)+3 种基金Scientific Instrument Developing Project of the Chinese Academy of Sciences(grant no.GJJSTD20200002,YJKYYQ20200067)Key Research Program of Frontier Sciences,CAS(grant no.ZDBS-LY-JSC004)Haidong Li acknowledges the support from Youth Innovation Promotion Association,CAS(grant no.2020330)Xin Zhou acknowledges the support from the Tencent Foundation through the XPLORER PRIZE.
文摘The ongoing pandemic of coronavirus disease 2019(COVID-19)has been a great burden for the healthcare system in many countries because of its high transmissibility,severity,and fatality.Chest radiography and computed tomography(CT)play a vital role in the diagnosis,detection of complications,and prognostication of COVID-19.Additionally,magnetic resonance imaging(MRI),especially multi-nuclei MRI,is another important imaging technique for disease diagnosis because of its good soft tissue contrast and the ability to conduct structural and functional imaging,which has also been used to evaluate COVID-19-related organ injuries in previous studies.Herein,we briefly reviewed the recent research on multi-nuclei MRI for evaluating injuries caused by COVID-19 and the clinical 1 H MRI techniques and their applications for assessing injuries in lungs,brain,and heart.Moreover,the emerging hyperpolarized 129Xe gas MRI and its applications in the evaluation of pulmonary structures and functional abnormalities caused by COVID-19 were also reviewed.
基金supported by the National Natural Science Foundation of China (Nos. 51905309, 52035005, 52275349)the State Key Laboratory of Solidification Processing, China (No. SKLSP201912)。
基金Supported by National Natural Science Foundation of China(Grant Nos.52275349,52035005)Key Research and Development Program of Shandong Province of China(Grant No.2021ZLGX01)Qilu Young Scholar Program of Shandong University of China.
文摘A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld microstructure and properties of DS-FSZW joint were systematically investigated.It indicated that defect-free medium-thick Al/Cu DS-FSZW joint could be achieved under an optimal welding parameter.DS-FSZW joint was prone to form void defects in the bottom of the second-pass weld.The recrystallization mechanisms at the top and middle of the weld nugget zone(WNZ)were continuous dynamic recrystallization(CDRX)and geometric dynamic recrystallization(GDRX).While the major recrystallization mechanism at the bottom of the WNZ was GDRX.DS-FSZW joint of the optimal welding condition with 850 r/min-400 mm/min was produced with a continuous thin and crack-free IMCs layer at the Al/Cu interface,and the maximum tensile strength of this joint is 160.57 MPa,which is equivalent to 65.54%of pure Cu base material.Moreover,the corrosion resistance of Al/Cu DS-FSZW joints also achieved its maximum value at the optimal welding parameter of 850 r/min-400 mm/min.It demonstrates that the DS-FSZW process can simultaneously produce medium-thick Al/Cu joints with excellent mechanical performance and corrosion resistance.
基金supported by the Beijing Featured Livestock and Poultry Genetic Resources Preservation Project,China(202203310002)China Agriculture Research System of MOF and MARA(CARS40)+1 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(ASTIPIAS04)the Central Guidance on Local Science and Technology Development Fund of Hebei Province,China(236Z6602G)。
文摘Crossed beak is a complex mode of inheritance with prevalence ranging from 0.2 to 7.4% in at least 12 chicken strains worldwide.To reveal the intrinsic factors causing crossed beaks,genes expression patterns in bilateral mandibular condyle between affected and normal birds were characterized by RNA sequencing analysis in the present studies.Crossed beak was induced by short length of unilateral mandibular ramus,and a total of 110differentially expressed genes were up-or down-regulated in the affected(short)mandibular condyle side as compared to the normal side.Carbonic anhydrase 2(CA2)and Carbonic anhydrase 13(CA13)were enriched in the carbonate dehydratase activity,and high-expressed in mandibular condyle and osteoblasts(P<0.05).However,both were low-expressed in short mandibular condyle side of affected birds(P<0.05).The carbonate dehydratase inhibitor experiments confirmed that there is positive association between the calcification and carbonic anhydrase isoenzymes.Quantitative analysis with cetylpyridinium chloride showed a decrease in calcification when the cells were transfected with an anti-CA13 shRNA.Our research suggested that CA2 and CA13 are down-calcified in shortside mandibular condyle,and caused mandibular ramus to grow slowly.CA2 and CA13 have the critical role in crossed beaks by regulating calcification of mandibular condyle.
基金supported by the China Postdoctoral Science Foundation(2022M723370)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23080603)。
文摘Background Rosemary extract(RE)has been reported to exert antioxidant property.However,the application of RE in late-phase laying hens on egg quality,intestinal barrier and microbiota,and oviductal function has not been systematically studied.This study was investigated to detect the potential effects of RE on performance,egg quality,serum parameters,intestinal heath,cecal microbiota and metabolism,and oviductal gene expressions in late-phase laying hens.A total of 21065-week-old“Jing Tint 6”laying hens were randomly allocated into five treatments with six replicates and seven birds per replicate and fed basal diet(CON)or basal diet supplemented with chlortetracycline at 50 mg/kg(CTC)or RE at 50 mg/kg(RE50),100 mg/kg(RE100),and 200 mg/kg(RE200).Results Our results showed that RE200 improved(P<0.05)Haugh unit and n-6/n-3 of egg yolk,serum superoxide dismutase(SOD)compared with CON.No significant differences were observed for Haugh unit and n-6/n-3 of egg yolk among CTC,RE50,RE100 and RE200 groups.Compared with CTC and RE50 groups,RE200 increased serum SOD activity on d 28 and 56.Compared with CON,RE supplementation decreased(P<0.05)total cholesterol(TC)level.CTC,RE100 and RE200 decreased(P<0.05)serum interleukin-6(IL-6)content compared with CON.CTC and RE200 increased jejunal m RNA expression of ZO-1 and Occludin compared with CON.The biomarkers of cecal microbiota and metabolite induced by RE 200,including Firmicutes,Eisenbergiella,Paraprevotella,Papillibacter,and butyrate,were closely associated with Haugh unit,n-6/n-3,SOD,IL-6,and TC.PICRUSt2 analysis indicated that RE altered carbohydrate and amino acid metabolism of cecal microbiota and increased butyrate synthesizing enzymes,including 3-oxoacid Co A-transferase and butyrate-acetoacetate Co A-transferase.Moreover,transcriptomic analysis revealed that RE200 improved gene expressions and functional pathways related to immunity and albumen formation in the oviductal magnum.Conclusions Dietary supplementation with 200 mg/kg RE could increase egg quality of late-phase laying hens via modulating intestinal barrier,cecal microbiota and metabolism,and oviductal function.Overall,RE could be used as a promising feed additive to improve egg quality of laying hens at late stage of production.
基金the financial support from Shanxi Province Science and Technology Department(20201101012,202101060301016)the support from the APRC Grant of the City University of Hong Kong(9380086)+5 种基金the TCFS Grant(GHP/018/20SZ)MRP Grant(MRP/040/21X)from the Innovation and Technology Commission of Hong Kongthe Green Tech Fund(202020164)from the Environment and Ecology Bureau of Hong Kongthe GRF grants(11307621,11316422)from the Research Grants Council of Hong KongGuangdong Major Project of Basic and Applied Basic Research(2019B030302007)Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials(2019B121205002).
文摘A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.
基金supported by the National Natural Science Foundation of China(U19B2012)the Natural Science Foundation of Shandong Province of China(ZR2021ME196),which are gratefully acknowledged.
文摘Due to the high-pressure and low-temperature exploitation environment,the characteristics of hydrates are directly related to the safety of pipeline transportation,which is an important research topic for deep-sea flow assurance.In this review,six kinds of extensively used experimental equipment and three types of hot computer simulation methods,which are employed to explore the hydrate characteristics under deep-sea conditions,are comprehensively summarized,covering micro to macro research scales.The experimental equipment includes rotational rheometer,flow loop,high-pressure reactor,differential scanning calorimeter(DSC),micromechanical force(MMF)testing apparatus and microscopic morphology observation(MMO)device.The computer simulation methods involve numerical simulation,molecular dynamics(MD)simulation,Monte Carlo(MC)simulation and first-principles calculation.Their advantages and disadvantages are compared in detail,and their basic principles,main applications and the latest research progress are introduced.Some suggestions for future research methods are also provided.This work aims to help readers quickly grasp the characteristics of the most used research methods,choose suitable methods for their study and further expand these methods,so as to advance the development in hydrate research area.
基金financially supported by the National Natural Science Foundation of China(32201868 and 32001575)。
文摘Phosphorus(P)is essential for living plants,and P deficiency is one of the key factors limiting the yield in rapeseed production worldwide.As the most important organ for plants,root morphology traits(RMTs)play a key role in P absorption.To investigate the genetic variability of RMT under low P availability,we dissected the genetic structure of RMTs by genome-wide association studies(GWAS),linkage mapping and candidate gene association studies(CGAS).A total of 52 suggestive loci were associated with RMTs under P stress conditions in 405 oilseed rape accessions.The purple acid phosphatase gene BnPAP17 was found to control the lateral root number(LRN)and root dry weight(RDW)under low P stress.The expression of BnPAP17 was increased in shoot tissue in P-efficient cultivars compared to root tissue and P-inefficient cultivars in response to low P stress.Moreover,the haplotype of BnPAP17^(Hap3)was detected for the selective breeding of P efficiency in oilseed rape.Over-expression of the BnPAP17^(Hap3)could promote the shoot and root growth with enhanced tolerance to low P stress and organic phosphorus(Po)utilization in oilseed rape.Collectively,these findings increase our understanding of the mechanisms underlying BnPAP17-mediated low P stress tolerance in oilseed rape.
文摘Dispersion fuels,knowned for their excellent safety performance,are widely used in advanced reactors,such as hightemperature gas-cooled reactors.Compared with deterministic methods,the Monte Carlo method has more advantages in the geometric modeling of stochastic media.The explicit modeling method has high computational accuracy and high computational cost.The chord length sampling(CLS)method can improve computational efficiency by sampling the chord length during neutron transport using the matrix chord length?s probability density function.This study shows that the excluded-volume effect in realistic stochastic media can introduce certain deviations into the CLS.A chord length correction approach is proposed to obtain the chord length correction factor by developing the Particle code based on equivalent transmission probability.Through numerical analysis against reference solutions from explicit modeling in the RMC code,it was demonstrated that CLS with the proposed correction method provides good accuracy for addressing the excludedvolume effect in realistic infinite stochastic media.
基金supported by the Hunan Provincial Science and Technology Department Project(2015WK3012)the National Natural Science Foundation of China(No.81571021)+3 种基金R&D of Key Project of Hunan Provincial Science and Technology Department(2022SK2010)R&D of Key Technology of Light Metal Air Battery,Transformation and Industrialization of Scientific and Technological Achievements of Hunan Province(2020GK2071)R&D of Key Technology and Materials of Magnesium Air Battery,Transformation of Scientific and Technological Achievements of Changsha City(Kh2005186)Technology Fundation(2021JCJQ-JJ-0432)。
文摘The repair and regeneration of bone defects are highly challenging orthopedic problems.Recently,Mg-based implants have gained popularity due to their unique biodegradation and elastic modulus similar to that of human bone.The aim of our study is to develop a magnesium alloy with a controllable degradation that can closely match bone tissue to help injuries heal in vivo and avoid cytotoxicity caused by a sudden increase in ion concentration.In this study,we prepared and modified Mg-3Zn,Mg-3Zn-1Y,and Mg-2Zn-1Mn by hot extrusion,and used Mg-2.5Y-2.5Nd was as a control.We then investigated the effect of additions of Y and Mn on alloys'properties.Our results show that Mn and Y can improve not only compression strength but also corrosion resistance.The alloy Mg-2Zn-1Mn demonstrated good cytocompatibility in vitro,and for this reason we selected it for implantation in vivo.The degraded Mg-2Zn-1Mn implanted a bone defect area did not cause obvious rejection and inflammatory reaction,and the degradation products left no signs of damage to the heart,liver,kidney,or brain.Furthermore,we find that Mg-2Zn-1Mn can promote an osteoinductive response in vivo and the formation of bone regeneration.
基金supported by grants from the National Key Research and Development Program of China(2021YFD1901203)。
文摘Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator involved in uptake and transport of Cu via activation of OsCOPT2 and OsHMA expression.OsMYB84 was highly expressed in roots and anthers and induced by Cu.Overexpression of OsMYB84 promoted uptake and root-to-shoot translocation of Cu in rice,facilitated Cu distribution into grain and increased grain yield.In contrast,mutation of OsMYB84 reduced Cu concentration in xylem sap.OsMYB84 bound to the promoter region of OsCOPT2 and OsHMA5 and upregulated their expression.OsCOPT2 mutants showed reduced uptake of Cu and OsHMA5 overexpression lines showed increased root-to-shoot translocation of Cu.
基金supported by the Natural Science Foundation of Henan Province,China(Grant Nos.232300420353 and 232300420392)the Key Scientific Research Project of Higher Education of Henan Province(Grant No.24B140001)+2 种基金the Doctor Scientific Research Initiate Fund of Anyang Institute of Technology(Grant No.BSJ2022010)the National Basic Research Program of China(Grant No.2009CB939901)the Henan Provincial Science and Technology Research Project(Grant No.232102241016).
文摘To insight into the B-site ordering in RFe_(0.5)Cr_(0.5)O_(3)ceramics,a series of RFe_(0.5)Cr_(0.5)O_(3)ceramics(R=La,Y,Lu)were synthesized by the sol-gel method,and the structural and magnetic properties were systemically investigated.By using the Rietveld refinement of all samples,it is found that the structural distortion is increased as the R ionic radius decreases,leading to the weakened interactions between Fe/Cr ions.Moreover,the Fe and Cr are arranged in disorder in LaFe_(0.5)Cr_(0.5)O_(3),but partially ordered in YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3),showing an increasing trend of the proportion of ordered domains with the decrease of R ionic radius.Through fitting the temperature-dependent magnetizations,it is identified that the magnetization reversal(MR)in disorder LaFe_(0.5)Cr_(0.5)O_(3)is resulted from the competition between the moments of Cr and Fe sublattices.In the partially ordered YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3)ceramics,because of the presence of Fe-O-Cr networks in the ordered domains whose moment is antiparallel to that of Fe-O-Fe and Cr-O-Cr in the disordered domains,the compensation temperature T_(comp)of MR is increased by nearly 50 K.These results suggest that the changing of R-site ions could be used very effectively to modify the Fe-O-Cr ordering,apart from the structural distortion,which has a direct effect on the magnetic exchange interactions in RFe_(0.5)Cr_(0.5)O_(3)ceramics.Then at values of composition where ordered domains are expected to be larger in number as compared to disordered domains and with a weaker structural distortion,one can expect a higher transition temperature Tcomp,providing a different view for adjustment of the magnetic properties of RFe_(0.5)Cr_(0.5)O_(3)ceramics for practical applications.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFA1406500)the National Natural Science Foundation of China(Grant Nos.12174454,U2130101,and 92165204)+2 种基金the Guangdong Basic and Applied Basic Research Funds(Grant Nos.2024B1515020040 and 2022A1515010035)Guangzhou Basic and Applied Basic Research Funds(Grant No.2024A04J6417)Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices(Grant No.2022B1212010008).
文摘The kagome system has attracted great interest in condensed matter physics due to its unique structure that canhost various exotic states such as superconductivity(SC),charge density waves(CDWs)and nontrivial topological states.The topological semimetal RbTi_(3)Bi_(5)consisting of a Ti kagome layer shares a similar crystal structure to the topologicalcorrelated materials AV_(3)Sb_(5)(A=K,Rb,Cs)but without the absence of CDW and SC.Systematic de Haas-van Alphenoscillation measurements are performed on single crystals of RbTi_(3)Bi_(5)to pursue nontrivial topological physics and exoticstates.Combining this with theoretical calculations,the detailed Fermi surface topology and band structure are investigated.A two-dimensional Fermi pocket b is revealed with a light effective mass,consistent with the semimetal predictions.TheLandau fan diagram of RbTi_(3)Bi_(5)reveals a zero Berry phase for the b oscillation in contrast to that of CsTi_(3)Bi_(5).Theseresults suggest that kagome RbTi_(3)Bi_(5)is a good candidate for exploring nontrivial topological exotic states and topologicalcorrelated physics.
文摘To address air pollution and offer a convenient and comfortable living environment,the Chinese government launched a smart city pilot(SCP)project in 2012,accompanied by a comprehensive set of environmental and energy-related laws and regulations.Although academic interest in smart cities has surged,there remains a notable gap in empirical research exploring the economic,environmental,and energy effects of such initiatives.Taking 232 prefecture-level cities from 2003 to 2017 as research subjects,this study measures energy effi‐ciency by using energy consumption per unit of GDP and adopts a difference-in-differences(DID)analysis to investigate the impact of SCPs on energy efficiency.The empirical results indicate that SCPs improved energy efficiency by promoting urban technological innovation capabilities and green total factor productivity,and this effect was more pronounced in cities that were more dependent on traditional fossil fuel energy sources and had more developed fiscal and financial levels.Studying the impact of smart city construction on energy utilization efficiency in developing countries,such as China,is not only significantly enlightening for China’s green and low-carbon transition but also provides reference opinions for constructing smart cities and the path to enhancing energy efficiency in other developing countries.The findings provide valuable insights into the global development of smart cities,urban sustainability,and high-quality economic growth.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274471 and 11922415)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515011168)+3 种基金the Key Research&Development Program of Guangdong Province,China(Grant No.2019B110209003)the Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices(Grant Nos.2022B1212010008)Lingyong Zeng was supported by the Postdoctoral Fellowship Program of CPSF(Grant Nos.GZC20233299)Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(Grant Nos.29000-31610058)。
文摘Chemical doping is a critical factor in the development of new superconductors or optimizing the superconducting transition temperature(T_(c))of the parent superconducting materials.Here,a new simple urea approach is developed to synthesize the N-dopedα-Mo_(2)C.Benefiting from the simple urea method,a broad superconducting dome is found in the Mo_(2)C_(1−x)N_(x)(0≤x≤0.49)compositions.X-ray diffraction results show that the structure of𝛼α-Mo_(2)C remains unchanged and there is a variation of lattice parameters with nitrogen doping.Resistivity,magnetic susceptibility,and heat capacity measurement results confirm that T_(c)was strongly increased from 2.68K(x=0)to 7.05K(x=0.49).First-principles calculations and our analysis indicate that increasing nitrogen doping leads to a rise in the density of states at the Fermi level and doping-induced phonon softening,which enhances electron–phonon coupling.This results in an increase in𝑇T_(c)and a sharp rise in the upper critical field.Our findings provide a promising strategy for fabricating transition metal carbonitrides and provide a material platform for further study of the superconductivity of transition metal carbides.
基金the Scientific Research Project of Anhui Provincial Health Commission in 2021(#AHWJ2021b109 to LS)Scientific and Technological Research Program of Chongqing Municipal Education Commission(#KJZD-K201900402 to TZ)+1 种基金Special Fund for Wannan Medical College Scholar Project(#WK2021F07)Educational Commission of Anhui Province of China(2022AH051241).
文摘The role of lncRNA KCNQ1 opposite strand/antisense transcript 1(KCNQ1OT1)in colon cancer involves various tumorigenic processes and has been studed widely.However,the mechanism by which it promotes colon cancer remains unclear.Retrovirnl vector pSEB61 was retroftted in established HCT116 siKCN and SW480-siKCN cells to silence KCNQ1 OT1.Cellular proliferation was measured using CCK8 assay,and flow cytometry(FCM)detected cell cydle changes.RNA sequencing(RNA Seq)analysis showed differentially expressed genes(DEGs).Gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses were carried out to analyze enriched functions and signaling pathways.RT-qPCR,immunofluorescence,and western blotting were carried out to validate downstream gene expressions.The effects of tumorigenesis were evaluated in BALB/c nude mice by tumor xenografts.Our data revealed that the silencing of KONQ1OT1 in HCT116 and SW480 cells slowed cell growth and decreased the number of cells in the G2/M phase.RNA-Seq analysis showed the data of DEGs enriched in various GO and KEGG pathways such as DNA replication and cell cyde.RT qPCR,immunofluorescence,and western blotting confirmed downstream CCNE2 and PCNA gene expressions.HCT116 siKCN cells signifcantly suppressed tumorigenesis in BALB/c nude mice.Our study suggests that lncRNA KCNQ1OT1 may provide a promising therapeutic strategy for colon cancer.
基金Supported by Natural Science Basic Research Program of Shaanxi Province,No.2021JM-256.
文摘BACKGROUND The role of Sm-like 5(LSM5)in colon cancer has not been determined.In this study,we investigated the role of LSM5 in progression of colon cancer and the potential underlying mechanism involved.AIM To determine the role of LSM5 in the progression of colon cancer and the potential underlying mechanism involved.METHODS The Gene Expression Profiling Interactive Analysis database and the Human Protein Atlas website were used for LSM5 expression analysis and prognosis analysis.Real-time quantitative polymerase chain reaction and Western blotting were utilized to detect the expression of mRNAs and proteins.A lentivirus targeting LSM5 was constructed and transfected into colon cancer cells to silence LSM5 expression.Proliferation and apoptosis assays were also conducted to evaluate the growth of the colon cancer cells.Human GeneChip assay and bioinformatics analysis were performed to identify the potential underlying mechanism of LSM5 in colon cancer.RESULTS LSM5 was highly expressed in tumor tissue and colon cancer cells.A high expression level of LSM5 was related to poor prognosis in patients with colon cancer.Knockdown of LSM5 suppressed proliferation and promoted apoptosis in colon cancer cells.Silencing of LSM5 also facilitates the expression of p53,cyclin-dependent kinase inhibitor 1A(CDKN1A)and tumor necrosis factor receptor superfamily 10B(TNFRSF10B).The inhibitory effect of LSM5 knockdown on the growth of colon cancer cells was associated with the upregulation of p53,CDKN1A and TNFRSF10B.CONCLUSION LSM5 knockdown inhibited the proliferation and facilitated the apoptosis of colon cancer cells by upregulating p53,CDKN1A and TNFRSF10B.