S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
BACKGROUND Non-alcoholic fatty liver disease(NAFLD)is the most common liver disease worldwide,affecting about 1/4th of the global population and causing a huge global economic burden.To date,no drugs have been approve...BACKGROUND Non-alcoholic fatty liver disease(NAFLD)is the most common liver disease worldwide,affecting about 1/4th of the global population and causing a huge global economic burden.To date,no drugs have been approved for the treatment of NAFLD,making the correction of unhealthy lifestyles the principle method of treatment.Identifying patients with poor adherence to lifestyle correction and attempting to improve their adherence are therefore very important.AIM To develop and validate a scale that can rapidly assess the adherence of patients with NAFLD to lifestyle interventions.METHODS The Exercise and Diet Adherence Scale(EDAS)was designed based on com-pilation using the Delphi method,and its reliability was subsequently evaluated.Demographic and laboratory indicators were measured,and patients completed the EDAS questionnaire at baseline and after 6 months.The efficacy of the EDAS was evaluated in the initial cohort.Subsequently,the efficacy of the EDAS was internally verified in a validation cohort.RESULTS The EDAS consisted of 33 items in six dimensions,with a total of 165 points.Total EDAS score correlated significantly with daily number of exercise and daily reduction in calorie intake(P<0.05 each),but not with overall weight loss.A total score of 116 was excellent in predicting adherence to daily reduction in calorie intake(>500 kacl/d),(sensitivity/specificity was 100.0%/75.8%),while patients score below 97 could nearly rule out the possibility of daily exercise(sensitivity/specificity was 89.5%/44.4%).Total EDAS scores≥116,97-115,and<97 points were indicative of good,average,and poor adherence,respectively,to diet and exercise recommendations.CONCLUSION The EDAS can reliably assess the adherence of patients with NAFLD to lifestyle interventions and have clinical application in this population.展开更多
高频变压器为功率变换器的核心磁性元件,利用仿真软件对高频变压器进行电磁场仿真分析,可以节省设计时间、优化结构、提高效率。在对电磁场和温度场的控制方程、边界条件进行详细分析的基础上,建立高频变压器电磁场—温度场耦合计算流...高频变压器为功率变换器的核心磁性元件,利用仿真软件对高频变压器进行电磁场仿真分析,可以节省设计时间、优化结构、提高效率。在对电磁场和温度场的控制方程、边界条件进行详细分析的基础上,建立高频变压器电磁场—温度场耦合计算流程。利用Infolytica的MagNet和ThermNet仿真软件,对一台5 k Hz/15 kW纳米晶合金磁芯三相五柱式高频变压器的漏磁场、磁芯损耗、绕组损耗和温度场进行有限元法计算,开展空载和短路实验研究,验证计算方法的准确性。展开更多
Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable opt...Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable option for long-term carbon storage.Basalt rich in alkaline earth elements facilitates rapid and permanent CO_(2) fixation as carbonates.However,the complex CO_(2)-fluid-basalt interaction poses challenges for assessing carbon storage potential.Under different reaction conditions,the carbonation products and carbonation rates vary.Carbon mineralization reactions also induce petrophysical and mechanical responses,which have potential risks for the long-term injectivity and the carbon storage safety in basalt reservoirs.In this paper,recent advances in carbon mineralization storage in basalt based on laboratory research are comprehensively reviewed.The assessment methods for carbon storage potential are introduced and the carbon trapping mechanisms are investigated with the identification of the controlling factors.Changes in pore structure,permeability and mechanical properties in both static reactions and reactive percolation experiments are also discussed.This study could provide insight into challenges as well as perspectives for future research.展开更多
Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for ...Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for n euro regeneration in the adult mammalian central ne rvous system.Howeve r,many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry.In addition,concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tra cing mice.In this study,we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ecto pic expression of the neural transcription factor NeuroD1 in both prolife rating reactive astrocytes and lineage-tra ced astrocytes in the mouse cortex.Time-lapse imaging over several wee ks revealed the ste p-by-step transition from a typical astrocyte with numero us short,tapered branches to a typical neuro n with a few long neurites and dynamic growth cones that actively explored the local environment.In addition,these lineage-converting cells were able to migrate ra dially or to ngentially to relocate to suitable positions.Furthermore,two-photon Ca2+imaging and patch-clamp recordings confirmed that the newly generated neuro ns exhibited synchronous calcium signals,repetitive action potentials,and spontaneous synaptic responses,suggesting that they had made functional synaptic connections within local neural circuits.In conclusion,we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuro regeneration and neural circuit reconstruction.展开更多
This paper aims to enhance the compression capacity of underwater cylindrical shells by adopting the corrugated sandwich structure of cuttlebone.The cuttlebone suffers uniaxial external compression,while underwater cy...This paper aims to enhance the compression capacity of underwater cylindrical shells by adopting the corrugated sandwich structure of cuttlebone.The cuttlebone suffers uniaxial external compression,while underwater cylindrical shells are in a biaxial compressive stress state.To suit the biaxial compressive stress state,a novel bidirectional corrugated sandwich structure is proposed to improve the bearing capacity of cylindrical shells.The static and buckling analysis for the sandwich shell and the unstiffened cylindrical shell with the same volume-weight ratio are studied by numerical simulation.It is indicated that the proposed sandwich shell can effectively reduce the ratio between circumferential and axial stress from 2 to 1.25 and improve the critical buckling load by about 1.63 times.Numerical simulation shows that optimizing and adjusting the structural parameters could significantly improve the advantage of the sandwich shell.Then,the hydrostatic pressure tests for shell models fabricated by 3D printing are carried out.According to the experimental results,the overall failure position of the sandwich shell is at the center part of the sandwich shell.It has been found the average critical load of the proposed sandwich shell models exceeds two times that of the unstiffened shell models.Hence,the proposed bio-inspired bidirectional corrugated sandwich structure can significantly enhance the pressure resistance capability of cylindrical shells.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
文摘【目的】探究残差神经网络(residual neural network,ResNet)对不同种类鸡蛋的分类效果,明确深度学习应用存在智能鸡蛋巡检装置的可行性,为家禽养殖智能化进程提供新思路,并为鸡蛋分类研究提供数据支撑。【方法】在鸡舍实地取样,采用自适应矩估计优化器(adaptive moment estimation,Adam)以微调最后1层、微调所有层和重新训练所有层3种迁移学习策略分别训练,并通过调整模型权重参数及改变学习率的方式训练出最佳分类模型。【结果】得到识别准确率高达98.971%的鸡蛋分类模型。计算出模型在数据集上的各类评估指标,并借助混淆矩阵及语义特征降维可视化,分析出鸡蛋分类识别中易被误判的类别及语义。该模型部署后实时性良好,满足实际需求。【结论】鸡蛋的分类识别中光照条件是关键影响因素,应尽可能使鸡舍光照稳定均衡。针对6类鸡蛋,微调所有层并调整学习率参数为0.6,可得最佳模型。其在鸡舍场景下分类效果优良,尤其是颜色语义,应用于智能鸡蛋巡检装置,可有效降低人力成本。后续研究中应注重畸形蛋及软壳蛋的记录,为进一步优化提供数据支撑。
基金the Science and Technology Foundation of Tianjin Municipal Health Bureau,No.12KG119Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-059B+1 种基金Tianjin Health Science and Technology Project key discipline special,No.TJWJ2022XK034Research project of Chinese traditional medicine and Chinese traditional medicine combined with Western medicine of Tianjin municipal health and Family Planning Commission,No.2021022.
文摘BACKGROUND Non-alcoholic fatty liver disease(NAFLD)is the most common liver disease worldwide,affecting about 1/4th of the global population and causing a huge global economic burden.To date,no drugs have been approved for the treatment of NAFLD,making the correction of unhealthy lifestyles the principle method of treatment.Identifying patients with poor adherence to lifestyle correction and attempting to improve their adherence are therefore very important.AIM To develop and validate a scale that can rapidly assess the adherence of patients with NAFLD to lifestyle interventions.METHODS The Exercise and Diet Adherence Scale(EDAS)was designed based on com-pilation using the Delphi method,and its reliability was subsequently evaluated.Demographic and laboratory indicators were measured,and patients completed the EDAS questionnaire at baseline and after 6 months.The efficacy of the EDAS was evaluated in the initial cohort.Subsequently,the efficacy of the EDAS was internally verified in a validation cohort.RESULTS The EDAS consisted of 33 items in six dimensions,with a total of 165 points.Total EDAS score correlated significantly with daily number of exercise and daily reduction in calorie intake(P<0.05 each),but not with overall weight loss.A total score of 116 was excellent in predicting adherence to daily reduction in calorie intake(>500 kacl/d),(sensitivity/specificity was 100.0%/75.8%),while patients score below 97 could nearly rule out the possibility of daily exercise(sensitivity/specificity was 89.5%/44.4%).Total EDAS scores≥116,97-115,and<97 points were indicative of good,average,and poor adherence,respectively,to diet and exercise recommendations.CONCLUSION The EDAS can reliably assess the adherence of patients with NAFLD to lifestyle interventions and have clinical application in this population.
文摘高频变压器为功率变换器的核心磁性元件,利用仿真软件对高频变压器进行电磁场仿真分析,可以节省设计时间、优化结构、提高效率。在对电磁场和温度场的控制方程、边界条件进行详细分析的基础上,建立高频变压器电磁场—温度场耦合计算流程。利用Infolytica的MagNet和ThermNet仿真软件,对一台5 k Hz/15 kW纳米晶合金磁芯三相五柱式高频变压器的漏磁场、磁芯损耗、绕组损耗和温度场进行有限元法计算,开展空载和短路实验研究,验证计算方法的准确性。
基金funding support from the National Key R&D Program of China(Grant No.2022YFE0115800)the Creative Groups of Natural Science Foundation of Hubei Province(Grant No.2021CFA030)Shanxi Provincial Key Research and Development Project(Grant No.202102090301009).
文摘Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable option for long-term carbon storage.Basalt rich in alkaline earth elements facilitates rapid and permanent CO_(2) fixation as carbonates.However,the complex CO_(2)-fluid-basalt interaction poses challenges for assessing carbon storage potential.Under different reaction conditions,the carbonation products and carbonation rates vary.Carbon mineralization reactions also induce petrophysical and mechanical responses,which have potential risks for the long-term injectivity and the carbon storage safety in basalt reservoirs.In this paper,recent advances in carbon mineralization storage in basalt based on laboratory research are comprehensively reviewed.The assessment methods for carbon storage potential are introduced and the carbon trapping mechanisms are investigated with the identification of the controlling factors.Changes in pore structure,permeability and mechanical properties in both static reactions and reactive percolation experiments are also discussed.This study could provide insight into challenges as well as perspectives for future research.
基金supported by the National Natural Science Foundation of China,No.31970906(to WLei)the Natural Science Foundation of Guangdong Province,No.2020A1515011079(to WLei)+4 种基金Key Technologies R&D Program of Guangdong Province,No.2018B030332001(to GC)Science and Technology Projects of Guangzhou,No.202206060002(to GC)the Youth Science Program of the National Natural Science Foundation of China,No.32100793(to ZX)the Pearl River Innovation and Entrepreneurship Team,No.2021ZT09 Y552Yi-Liang Liu Endowment Fund from Jinan University Education Development Foundation。
文摘Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for n euro regeneration in the adult mammalian central ne rvous system.Howeve r,many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry.In addition,concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tra cing mice.In this study,we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ecto pic expression of the neural transcription factor NeuroD1 in both prolife rating reactive astrocytes and lineage-tra ced astrocytes in the mouse cortex.Time-lapse imaging over several wee ks revealed the ste p-by-step transition from a typical astrocyte with numero us short,tapered branches to a typical neuro n with a few long neurites and dynamic growth cones that actively explored the local environment.In addition,these lineage-converting cells were able to migrate ra dially or to ngentially to relocate to suitable positions.Furthermore,two-photon Ca2+imaging and patch-clamp recordings confirmed that the newly generated neuro ns exhibited synchronous calcium signals,repetitive action potentials,and spontaneous synaptic responses,suggesting that they had made functional synaptic connections within local neural circuits.In conclusion,we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuro regeneration and neural circuit reconstruction.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFB2602800)the National Natural Science Foundation of China(Grant Nos.51879231,51679214)。
文摘This paper aims to enhance the compression capacity of underwater cylindrical shells by adopting the corrugated sandwich structure of cuttlebone.The cuttlebone suffers uniaxial external compression,while underwater cylindrical shells are in a biaxial compressive stress state.To suit the biaxial compressive stress state,a novel bidirectional corrugated sandwich structure is proposed to improve the bearing capacity of cylindrical shells.The static and buckling analysis for the sandwich shell and the unstiffened cylindrical shell with the same volume-weight ratio are studied by numerical simulation.It is indicated that the proposed sandwich shell can effectively reduce the ratio between circumferential and axial stress from 2 to 1.25 and improve the critical buckling load by about 1.63 times.Numerical simulation shows that optimizing and adjusting the structural parameters could significantly improve the advantage of the sandwich shell.Then,the hydrostatic pressure tests for shell models fabricated by 3D printing are carried out.According to the experimental results,the overall failure position of the sandwich shell is at the center part of the sandwich shell.It has been found the average critical load of the proposed sandwich shell models exceeds two times that of the unstiffened shell models.Hence,the proposed bio-inspired bidirectional corrugated sandwich structure can significantly enhance the pressure resistance capability of cylindrical shells.