In order to discover the novel anticonvulsant drugs, pharmacophore screening of the anticonvulsant inhibitors was enforced. Genetic Algorithm with Linear Assignment for Hypermolecular Alignment of Datasets (GALAHAD)...In order to discover the novel anticonvulsant drugs, pharmacophore screening of the anticonvulsant inhibitors was enforced. Genetic Algorithm with Linear Assignment for Hypermolecular Alignment of Datasets (GALAHAD) and Comparative Molecular Field Analysis (CoMFA) studies were combined to implement our research. Firstly, multiple models were generated using GALAHAG based on high active molecules. Secondly, several of them were validated using the CoMFA study. Finally, a good values of q2 from training set and promising predictive power from test set were obtained based on one model simutaneously. One model had been selected as the most reasonable pharmacophore model. The results of the CoMFA study based on the model 1 suggested that both steric and electrostatic interactions played important roles.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 20872095).
文摘In order to discover the novel anticonvulsant drugs, pharmacophore screening of the anticonvulsant inhibitors was enforced. Genetic Algorithm with Linear Assignment for Hypermolecular Alignment of Datasets (GALAHAD) and Comparative Molecular Field Analysis (CoMFA) studies were combined to implement our research. Firstly, multiple models were generated using GALAHAG based on high active molecules. Secondly, several of them were validated using the CoMFA study. Finally, a good values of q2 from training set and promising predictive power from test set were obtained based on one model simutaneously. One model had been selected as the most reasonable pharmacophore model. The results of the CoMFA study based on the model 1 suggested that both steric and electrostatic interactions played important roles.