Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as ...Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as a function of time in response to blocking and releasing of blood flow in a forearm are used as a measure of oxygen transport with blood to the tissue, which directly correlates with the skin microcirculation status. In this paper, a non-invasive dynamic monitoring system based on blood flow-mediated skin fluorescence (FMSF) technology is developed to monitor the NADH fluorescence intensity of skin tissue during the process of blocking reactive hyperemia. Simultaneously, laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) were used to observe blood flow, blood oxygen saturation (SOt2) and relative amount of hemoglobin (rHb) during the measurement process, which helped to explore NADH dynamics relevant physiological changes. A variety of parameters have been derived to describe NADH fluorescence curve based on the FMSF device. The experimental results are conducive to understanding the NADH measurement and the physiological processes related to it, which help FMSF to be a great avenue for in vivo physiological, clinical and pharmacological research on mitochondrial metabolism.展开更多
Drought causes water shortage and consequent retardation of plants growth and development.Therefore,improving the drought tolerance of plants is necessary for expanding cultivation and resource promotion.Increasing ev...Drought causes water shortage and consequent retardation of plants growth and development.Therefore,improving the drought tolerance of plants is necessary for expanding cultivation and resource promotion.Increasing evidence indicates that phospholipase is involved in the response of plants to drought stress.The objective of this study was to create new drought-tolerant chrysanthemum germplasm,which lays a foundation for the study of the molecular mechanism of phospholipase mediated stress response in chrysanthemum.CmPLDαhas the closest relationship with sunflower HaPLDα,and belongs to the PLDαfamily.CmPLDαover-expressing plants showed a slight shrinking under 20%PEG6000 treatment.The survival rate increased significantly by 1.7−1.8 times that of the wild type.Relative water content(RWC)of CmPLDαover-expressing plants were nearly 10%higher than that of the wild type.Relative electrical conductivity and MDA content were significantly lower than those of the wild type.ABA content of the over-expression lines Z1,Z2 were 1.3 and 1.22 times that of wild type,but ABA content of antisense lines F1,F2 was approximately 0.83 and 0.81 of those of wild type.Most plants of antisense transgenic lines F1,F2 were wrinkled,with a wilting index of 5 and 6,and the survival rate was also lower than that of the wild type after recovery growth.RWC of antisense lines were lower than over-expression lines,relative electrical conductivity and MDA content were significantly higher than those of the wild type.In summary,CmPLDαcould enhance tolerance of chrysanthemum to drought conditions.展开更多
The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two ...The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize.展开更多
There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,a...There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,and fexible optoelectronics.Existing direct-lithography methods are difficult to use on fexible,nonplanar,and biocompatible surfaces.Therefore,this fabrication is usually accomplished by nanotransfer printing.However,large-scale integration of multiscale nanostructures with unconventional substrates remains challenging because fabrication yields and quality are often limited by the resolution,uniformity,adhesivity,and integrity of the nanostructures formed by direct transfer.Here,we proposed a resist-based transfer strategy enabled by near-zero adhesion,which was achieved by molecular modification to attain a critical surface energy interval.This approach enabled the intact transfer of wafer-scale,ultrathin-resist nanofilms onto arbitrary substrates with mitigated cracking and wrinkling,thereby facilitating the in situ fabrication of nanostructures for functional devices.Applying this approach,fabrication of three-dimensional-stacked multilayer structures with enhanced functionalities,nanoplasmonic structures with~10 nm resolution,and MoS2-based devices with excellent performance was demonstrated on specific substrates.These results collectively demonstrated the high stability,reliability,and throughput of our strategy for optical and electronic device applications.展开更多
Avian metapneumovirus(aMPV) is a highly contagious pathogen that causes acute upper respiratory tract diseases in chickens and turkeys, resulting in serious economic losses. Subtype B aMPV has recently become the domi...Avian metapneumovirus(aMPV) is a highly contagious pathogen that causes acute upper respiratory tract diseases in chickens and turkeys, resulting in serious economic losses. Subtype B aMPV has recently become the dominant epidemic strain in China. We developed an attenuated aMPV subtype B strain by serial passaging in Vero cells and evaluated its safety and efficacy as a vaccine candidate. The safety test showed that after the 30th passage, the LN16-A strain was fully attenuated, as clinical signs of infection and histological lesions were absent after inoculation.The LN16-A strain did not revert to a virulent strain after five serial passages in chickens. The genomic sequence of LN16-A differed from that of the parent wild-type LN16(wtLN16) strain and had nine amino acid mutations. In chickens, a single immunization with LN16-A induced robust humoral and cellular immune responses, including the abundant production of neutralizing antibodies, CD4^(+) T lymphocytes, and the Th1(IFN-γ) and Th2(IL-4 and IL-6)cytokines. We also confirmed that LN16-A provided 100% protection against subtype B aMPV and significantly reduced viral shedding and turbinate inflammation. Our findings suggest that the LN16-A strain is a promising live attenuated vaccine candidate that can prevent infection with subtype B aMPV.展开更多
Genetic transformation has been an effective technology for improving the agronomic traits of maize.However,it is highly reliant on the use of embryonic callus(EC)and shows a serious genotype dependence.In this study,...Genetic transformation has been an effective technology for improving the agronomic traits of maize.However,it is highly reliant on the use of embryonic callus(EC)and shows a serious genotype dependence.In this study,we performed genomic sequencing for 80 core maize germplasms and constructed a high-density genomic variation map using our newly developed pipeline(MQ2Gpipe).Based on the induction rate of EC(REC),these inbred lines were categorized into three subpopulations.The low-REC germplasms displayed more abundant genetic diversity than the high-REC germplasms.By integrating a genome-wide selective signature screen and region-based association analysis,we revealed 95.23 Mb of selective regions and 43 REC-associated variants.These variants had phenotypic variance explained values ranging between 21.46 and 49.46%.In total,103 candidate genes were identified within the linkage disequilibrium regions of these REC-associated loci.These genes mainly participate in regulation of the cell cycle,regulation of cytokinesis,and other functions,among which MYB15 and EMB2745 were located within the previously reported QTL for EC induction.Numerous leaf area-associated variants with large effects were closely linked to several REC-related loci,implying a potential synergistic selection of REC and leaf size during modern maize breeding.展开更多
Stellar spectral classification is crucial in astronomical data analysis.However,existing studies are often limited by the uneven distribution of stellar samples,posing challenges in practical applications.Even when b...Stellar spectral classification is crucial in astronomical data analysis.However,existing studies are often limited by the uneven distribution of stellar samples,posing challenges in practical applications.Even when balancing stellar categories and their numbers,there is room for improvement in classification accuracy.This study introduces a Continuous Wavelet Transform using the Super Morlet wavelet to convert stellar spectra into wavelet images.A novel neural network,the Stellar Feature Network,is proposed for classifying these images.Stellar spectra from Large Sky Area Multi-Object Fiber Spectroscopic Telescope DR9,encompassing five equal categories(B,A,F,G,K),were used.Comparative experiments validate the effectiveness of the proposed methods and network,achieving significant improvements in classification accuracy.展开更多
This review focuses on thermodynamic and physical parameters,synthesis methods,and reported phases of Magnesium(Mg)containing high-entropy alloys(HEAs).Statistical data of publications concerning Mg-containing HEAs we...This review focuses on thermodynamic and physical parameters,synthesis methods,and reported phases of Magnesium(Mg)containing high-entropy alloys(HEAs).Statistical data of publications concerning Mg-containing HEAs were collected and analyzed.Data on the chemical elements included in Mg-containing HEAs,their theoretical end experimental densities,thermodynamic parameters,physical parameters,fabricated techniques and reported phases were also collected and discussed.On the basis of this information,a new classification for HEAs was proposed.It is also shown that the existing thermodynamic parameters cannot accurately predict the formation of a single phase solid solution for Mg-containing HEAs.The physical parameters of Mg-containing HEAs are within a wide range,and most of the synthesized Mg-containing HEAs have a complex multiphase structure.展开更多
Background:The high incidence of gallstone recurrence was a major concern for laparoscopic gallbladderpreserving surgery.This study aimed to investigate the risk factors for gallstone recurrence after gallbladder-pres...Background:The high incidence of gallstone recurrence was a major concern for laparoscopic gallbladderpreserving surgery.This study aimed to investigate the risk factors for gallstone recurrence after gallbladder-preserving surgery and to establish an individualized nomogram model to predict the risk of gallstone recurrence.Methods:The clinicopathological and follow-up data of 183 patients who were initially diagnosed with gallstones and treated with gallbladder-preserving surgery at our hospital from January 2012 to January 2019 were retrospectively collected.The independent predictive factors for gallstone recurrence following gallbladder-preserving surgery were identified by multivariate logistic regression analysis.A nomogram model for the prediction of gallstone recurrence was constructed based on the selected variables.The C-index,receiver operating characteristic(ROC)curve and calibration curve were used to evaluate the predictive power of the nomogram model for gallstone recurrence.Results:During the follow-up period,a total of 65 patients experienced gallstone recurrence,and the recurrence rate was 35.5%.Multivariate logistic regression analysis revealed that the course of gallstones>2 years[odds ratio(OR)=2.567,95%confidence interval(CI):1.270-5.187,P=0.009],symptomatic gallstones(OR=2.589,95%CI:1.059-6.329,P=0.037),multiple gallstones(OR=2.436,95%CI:1.133-5.237,P=0.023),history of acute cholecystitis(OR=2.778,95%CI:1.178-6.549,P=0.020)and a greasy diet(OR=2.319,95%CI:1.186-4.535,P=0.014)were independent risk factors for gallstone recurrence after gallbladder-preserving surgery.A nomogram model for predicting the recurrence of gallstones was established based on the above five variables.The results showed that the C-index of the nomogram model was 0.692,suggesting it was valuable to predict gallstone recurrence.Moreover,the calibration curve showed good consistency between the predicted probability and actual probability.Conclusions:The nomogram model for the prediction of gallstone recurrence might help clinicians develop a proper treatment strategy for patients with gallstones.Gallbladder-preserving surgery should be cautiously considered for patients with high recurrence risks.展开更多
Ear differentiation,grain development and their interaction with factors in the growing environment,such as temperature,solar radiation and precipitation,greatly influence grain number and grain weight,and ultimately ...Ear differentiation,grain development and their interaction with factors in the growing environment,such as temperature,solar radiation and precipitation,greatly influence grain number and grain weight,and ultimately affect summer maize production.In this study,field experiments involving different sowing dates were conducted over three years to evaluate the effects of temperature factors,average solar radiation and total precipitation on the growth process,ear differentiation,fertilization characteristics,grain filling and yield of summer maize varieties with different growth durations.Four hybrids were evaluated in Huang-Huai-Hai Plain(HHHP),China from 2018 to 2020 with five different sowing dates.The results showed that the grain yield formation of summer maize was strongly impacted by the environment from the silking(R1)to milking(R3)stage.Average minimum temperature(AT_(min))was the key environmental factor that determined yield.Reductions in the length of the growing season(r=–0.556,P<0.01)and the total floret number on ear(R^(2)=0.200,P<0.001)were found when AT_(min) was elevated from the emerging(VE)to R1 stage.Both grain-filling rate(R^(2)=0.520,P<0.001)and the floret abortion rate on ear(R^(2)=0.437,P<0.001)showed quadratic relationships with AT_(min) from the R1 to physiological maturity(R6)stage,while the number of days after the R1 stage(r=–0.756,P<0.01)was negatively correlated with AT_(min).An increase in AT_(min) was beneficial for the promotion of yield when it did not exceeded a certain level(above 23°C during the R1–R3 stage and 20–21°C during the R1-R6 stage).Enhanced solar radiation and precipitation during R1–R6 increased the grain-filling rate(R^(2)=0.562,P<0.001 and R^(2)=0.229,P<0.05,respectively).Compared with short-season hybrids,full-season hybrids showed much greater suitability for a critical environment.The coordinated regulation of AT_(min),ear differentiation and grain development at the pre-and post-silking stages improved maize yield by increasing total floret number and grain-filling rate,and by reducing the floret abortion rate on ear.展开更多
Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge proce...Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge process to prepare a noblemetal-free MC-60 catalyst containing MoO_(3),Mo_(2)C,and a Mo_(2)C–MoO_(3)interface.In the GOR,MC-60 shows activity as high as 745μA/(mmol/L cm^(2)),considerably higher than those of the Pt/CNT(270μA/(mmol/L cm^(2)))and Au/CNT catalysts(110μA/(mmol/L cm^(2))).In the GOR,the response minimum on MC-60 is as low as 8μmol/L,with a steady-state response time of only 3 s.Moreover,MC-60 has superior stability and anti-interference ability to impurities in the GOR.The better performance of MC-60 in the GOR is attributed to the abundant Mo sites bonding to C and O atoms at the MoO_(3)–Mo_(2)C interface.These Mo sites create active sites for promoting glucose adsorption and oxidation,enhancing MC-60 performance in the GOR.Thus,these results help to fabricate more effi cient noble-metal-free catalysts for the fabrication of glucose-based biofuel cells.展开更多
Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to t...Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to this endeavor.This review systematically summarizes the impact of built-in electric fields on enhancing charge separation and transfer mechanisms,focusing on the modulation of built-in electric fields in terms of depth and orderliness.First,mechanisms and tuning strategies for built-in electric fields are explored.Then,the state-of-the-art works regarding built-in electric fields for modulating charge separation and transfer are summarized and categorized according to surface and interface depth.Finally,current strategies for constructing bulk built-in electric fields in photoelectrodes are explored,and insights into future developments for enhancing charge separation and transfer in high-performance photoelectrochemical applications are provided.展开更多
Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully auto...Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully automated cars(i.e.,driverless cars).An interesting question is whether users are responsible for the accidents of these cars.Normative ethical and legal analyses frequently argue that individuals should not bear responsibility for harm beyond their control.Here,we consider human judgment of responsibility for accidents involving fully automated cars through three studies with seven experiments(N=2668).We compared the responsibility attributed to the occupants in three conditions:an owner in his private fully automated car,a passenger in a driverless robotaxi,and a passenger in a conventional taxi,where none of these three occupants have direct vehicle control over the involved vehicles that cause identical pedestrian injury.In contrast to normative analyses,we show that the occupants of driverless cars(private cars and robotaxis)are attributed more responsibility than conventional taxi passengers.This dilemma is robust across different contexts(e.g.,participants from China vs the Republic of Korea,participants with first-vs third-person perspectives,and occupant presence vs absence).Furthermore,we observe that this is not due to the perception that these occupants have greater control over driving but because they are more expected to foresee the potential consequences of using driverless cars.Our findings suggest that when driverless vehicles(private cars and taxis)cause harm,their users may face more social pressure,which public discourse and legal regulations should manage appropriately.展开更多
BACKGROUND:Chlorfenapyr is used to kill insects that are resistant to organophosphorus insecticides.Chlorfenapyr poisoning has a high mortality rate and is difficult to treat.This article aims to review the mechanisms...BACKGROUND:Chlorfenapyr is used to kill insects that are resistant to organophosphorus insecticides.Chlorfenapyr poisoning has a high mortality rate and is difficult to treat.This article aims to review the mechanisms,clinical presentations,and treatment strategies for chlorfenapyr poisoning.DATA RESOURCES:We conducted a review of the literature using PubMed,Web of Science,and SpringerLink from their beginnings to the end of October 2023.The inclusion criteria were systematic reviews,clinical guidelines,retrospective studies,and case reports on chlorfenapyr poisoning that focused on its mechanisms,clinical presentations,and treatment strategies.The references in the included studies were also examined to identify additional sources.RESULTS:We included 57 studies in this review.Chlorfenapyr can be degraded into tralopyril,which is more toxic and reduces energy production by inhibiting the conversion of adenosine diphosphate to adenosine triphosphate.High fever and altered mental status are characteristic clinical presentations of chlorfenapyr poisoning.Once it occurs,respiratory failure occurs immediately,ultimately leading to cardiac arrest and death.Chlorfenapyr poisoning is diflcult to treat,and there is no specific antidote.CONCLUSION:Chlorfenapyr is a new pyrrole pesticide.Although it has been identified as a moderately toxic pesticide by the World Health Organization(WHO),the mortality rate of poisoned patients is extremely high.There is no specific antidote for chlorfenapyr poisoning.Therefore,based on the literature review,future efforts to explore rapid and effective detoxification methods,reconstitute intracellular oxidative phosphorylation couplings,identify early biomarkers of chlorfenapyr poisoning,and block the conversion of chlorfenapyr to tralopyril may be helpful for emergency physicians in the diagnosis and treatment of this disease.展开更多
Objective:To explore the mechanism by which icariin alleviates viral myocarditis.Methods:CVB3-induced cardiomyocytes were used as an in vitro model of viral myocarditis to assess the effects of icariin treatment on ce...Objective:To explore the mechanism by which icariin alleviates viral myocarditis.Methods:CVB3-induced cardiomyocytes were used as an in vitro model of viral myocarditis to assess the effects of icariin treatment on cell viability,inflammation,and apoptosis.Moreover,the effects of icariin on ferroptosis and TLR4 signaling were assessed.After AC16 cells were transfected with TLR4 overexpression plasmids,the role of TLR4 in mediating the regulatory effect of icariin in viral myocarditis was investigated.Results:Icariin significantly elevated cell viability and reduced inflammatory factors TNF-α,IL-1β,IL-6,and IL-18.Flow cytometry revealed that icariin decreased apoptosis rate,and the protein expression of Bax and cleaved caspase 3 and 9 in CVB3-induced cardiomyocytes.Additionally,it suppressed ferroptosis including lipid peroxidation and ferrous ion,as well as the TLR4 signaling.However,TLR4 overexpression abrogated the modulatory effects of icariin.Conclusions:Icariin mitigates CVB3-induced myocardial injury by inhibiting TLR4-mediated ferroptosis.Further animal study is needed to verify its efficacy.展开更多
Short-chain fatty acids(SCFAs)are major metabolites produced by the gut microbiota through the fermentation of dietary fiber,and they have garnered significant attention due to their close association with host health...Short-chain fatty acids(SCFAs)are major metabolites produced by the gut microbiota through the fermentation of dietary fiber,and they have garnered significant attention due to their close association with host health.As important mediators between the gut microbiota and the host,SCFAs serve as energy substrates for intestinal epithelial cells and maintain homeostasis in host immune and energy metabolism by influencing host epigenetics,activating G protein-coupled receptors,and inhibiting pathogenic microbial infections.This review provides a comprehensive summary of SCFAs synthesis and metabolism and offering an overview of the latest research progress on their roles in protecting gut health,enhancing energy metabolism,mitigating diseases such as cancer,obesity,and diabetes,modulating the gut-brain axis and gut-l ung axis,and promoting bone health.展开更多
Background:Chronic wounds pose a significant surgical challenge,often requiring traditional treatments with limited efficacy.This study explores the promising impact of Shixiang plaster,a classic Chinese ointment,on w...Background:Chronic wounds pose a significant surgical challenge,often requiring traditional treatments with limited efficacy.This study explores the promising impact of Shixiang plaster,a classic Chinese ointment,on wound healing.We investigated the cluster of differentiation 31(CD31)expression,serum fibronectin(FN),and vascular endothelial growth factor(VEGF)levels in SPF rats with induced wounds to elucidate the mechanism behind Shixiang plaster’s effectiveness.We investigated the effect and explored the role of Shixiang plaster on the expression of CD31,serum FN,and VEGF in chronic wounds.Methods:The study involved 36 SPF rats divided into model,rb-bFGF,and Shixiang plaster groups.Penicillin was injected into the rats before modelling for 3 days to prevent infection.The skin was excised 2 cm below the horizontal line of the inferior border of the shoulder bone in the middle of the rat column up to the deep fascial layer and inoculated with a certain concentration of Staphylococcus aureus;the wound was covered aseptically for 3 days.The trauma area of the rats was observed at 3,7,and 14 days,respectively.Histopathology was observed using haematoxylin eosin and Masson staining.CD31 expression was detected using immunohistochemistry staining.FN and VEGF expression was detected using serum ELISA.Statistical analyses were carried out by the method of SPSS.Results:Regarding wound morphology,at 3 days,the recovery area of the Shixiang plaster group was larger than that of the other two groups,at 7 days,the wound healing rate of the Shixiang plaster group was significantly higher,and at 14 days,the wounds of the Shixiang plaster group had been mostly healed,with a healing rate of 98.3%.Haematoxylin eosin staining revealed a large amount of granulation tissue at 3 days in the Shixiang plaster group,and the epidermal scales disappeared at 14 days,with thinner epidermal thickness at 1 lesion and a large reduction in inflammatory cell infiltration.Masson staining showed that at 3,7,and 14 days,blue staining was the most abundant and deeper in the Shixiang plaster group,with richer collagen and a compact tissue matrix.Immunohistochemical testing showed strong positive expression of CD31 in the Shixiang plaster group,with abundant neovascularisation and large official lumens extending towards the surface of the wound.Statistically significant elevated expression of FN at 7 and 14 days was determined by ELISA in the Shixiang plaster group,and VEGF expression was significantly increased at 7 days,but expression had been expressed at a low level at 14 days.Conclusion:Shixiang plaster exhibits remarkable efficacy in healing chronic wounds.The proposed mechanism involves FN’s promotion of angiogenesis and cell proliferation,VEGF’s impact on angiogenesis and inflammation,and CD31’s regulatory role in inhibiting inflammation while promoting angiogenesis.展开更多
BACKGROUND Since adverse events during treatment affect adherence and subsequent glycemic control,understanding the safety profile of oral anti-diabetic drugs is imperative for type 2 diabetes mellitus(T2DM)therapy.AI...BACKGROUND Since adverse events during treatment affect adherence and subsequent glycemic control,understanding the safety profile of oral anti-diabetic drugs is imperative for type 2 diabetes mellitus(T2DM)therapy.AIM To evaluate the risk of infection in patients with T2DM treated with dipeptidyl-peptidase 4(DPP-4)inhibitors.METHODS Electronic databases were searched.The selection criteria included randomized controlled trials focused on cardiovascular outcomes.In these studies,the effects of DPP-4 inhibitors were directly compared to those of either other active anti-diabetic treatments or placebo.Six trials involving 53616 patients were deemed eligible.We calculated aggregate relative risks employing both random-effects and fixed-effects approaches,contingent upon the context.RESULTS The application of DPP-4 inhibitors showed no significant link to the overall infection risk[0.98(0.95,1.02)]or the risk of serious infections[0.96(0.85,1.08)],additionally,no significant associations were found with opportunistic infections[0.69(0.46,1.04)],site-specific infections[respiratory infection 0.99(0.96,1.03),urinary tract infections 1.02(0.95,1.10),abdominal and gastrointestinal infections 1.02(0.83,1.25),skin structure and soft tissue infections 0.81(0.60,1.09),bone infections 0.96(0.68,1.36),and bloodstream infections 0.97(0.80,1.18)].CONCLUSION This meta-analysis of data from cardiovascular outcome trials revealed no heightened infection risk in patients undergoing DPP-4 inhibitor therapy compared to control cohorts.展开更多
文摘Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as a function of time in response to blocking and releasing of blood flow in a forearm are used as a measure of oxygen transport with blood to the tissue, which directly correlates with the skin microcirculation status. In this paper, a non-invasive dynamic monitoring system based on blood flow-mediated skin fluorescence (FMSF) technology is developed to monitor the NADH fluorescence intensity of skin tissue during the process of blocking reactive hyperemia. Simultaneously, laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) were used to observe blood flow, blood oxygen saturation (SOt2) and relative amount of hemoglobin (rHb) during the measurement process, which helped to explore NADH dynamics relevant physiological changes. A variety of parameters have been derived to describe NADH fluorescence curve based on the FMSF device. The experimental results are conducive to understanding the NADH measurement and the physiological processes related to it, which help FMSF to be a great avenue for in vivo physiological, clinical and pharmacological research on mitochondrial metabolism.
基金funded by the National Key Research and Development Program of China(2018YFD1000402)the National Natural Science Foundation of China(32030098)Jiangsu Agriculture Science and Technology Innovation Fund(CX(18)2020).
文摘Drought causes water shortage and consequent retardation of plants growth and development.Therefore,improving the drought tolerance of plants is necessary for expanding cultivation and resource promotion.Increasing evidence indicates that phospholipase is involved in the response of plants to drought stress.The objective of this study was to create new drought-tolerant chrysanthemum germplasm,which lays a foundation for the study of the molecular mechanism of phospholipase mediated stress response in chrysanthemum.CmPLDαhas the closest relationship with sunflower HaPLDα,and belongs to the PLDαfamily.CmPLDαover-expressing plants showed a slight shrinking under 20%PEG6000 treatment.The survival rate increased significantly by 1.7−1.8 times that of the wild type.Relative water content(RWC)of CmPLDαover-expressing plants were nearly 10%higher than that of the wild type.Relative electrical conductivity and MDA content were significantly lower than those of the wild type.ABA content of the over-expression lines Z1,Z2 were 1.3 and 1.22 times that of wild type,but ABA content of antisense lines F1,F2 was approximately 0.83 and 0.81 of those of wild type.Most plants of antisense transgenic lines F1,F2 were wrinkled,with a wilting index of 5 and 6,and the survival rate was also lower than that of the wild type after recovery growth.RWC of antisense lines were lower than over-expression lines,relative electrical conductivity and MDA content were significantly higher than those of the wild type.In summary,CmPLDαcould enhance tolerance of chrysanthemum to drought conditions.
基金support of the National Key R&D Program of China(2023YFD2301500)the China Agriculture System of MOF and MARA(CARS-02)the Shandong Central Guiding the Local Science and Technology Development,China(YDZX20203700002548)。
文摘The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize.
基金supported by the National Key Research and Development Program of China(No.2022YFB4602600)the National Natural Science Foundation of China(No.52221001)Hunan Provincial Innovation Foundation for Postgraduate(No.CX20220406)。
文摘There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,and fexible optoelectronics.Existing direct-lithography methods are difficult to use on fexible,nonplanar,and biocompatible surfaces.Therefore,this fabrication is usually accomplished by nanotransfer printing.However,large-scale integration of multiscale nanostructures with unconventional substrates remains challenging because fabrication yields and quality are often limited by the resolution,uniformity,adhesivity,and integrity of the nanostructures formed by direct transfer.Here,we proposed a resist-based transfer strategy enabled by near-zero adhesion,which was achieved by molecular modification to attain a critical surface energy interval.This approach enabled the intact transfer of wafer-scale,ultrathin-resist nanofilms onto arbitrary substrates with mitigated cracking and wrinkling,thereby facilitating the in situ fabrication of nanostructures for functional devices.Applying this approach,fabrication of three-dimensional-stacked multilayer structures with enhanced functionalities,nanoplasmonic structures with~10 nm resolution,and MoS2-based devices with excellent performance was demonstrated on specific substrates.These results collectively demonstrated the high stability,reliability,and throughput of our strategy for optical and electronic device applications.
基金supported by the National Key Research and Development Program of China (2022YFD1800604)the China Agricultural Research System (CARS-41)the Heilongjiang Touyan Innovation Team Program of China
文摘Avian metapneumovirus(aMPV) is a highly contagious pathogen that causes acute upper respiratory tract diseases in chickens and turkeys, resulting in serious economic losses. Subtype B aMPV has recently become the dominant epidemic strain in China. We developed an attenuated aMPV subtype B strain by serial passaging in Vero cells and evaluated its safety and efficacy as a vaccine candidate. The safety test showed that after the 30th passage, the LN16-A strain was fully attenuated, as clinical signs of infection and histological lesions were absent after inoculation.The LN16-A strain did not revert to a virulent strain after five serial passages in chickens. The genomic sequence of LN16-A differed from that of the parent wild-type LN16(wtLN16) strain and had nine amino acid mutations. In chickens, a single immunization with LN16-A induced robust humoral and cellular immune responses, including the abundant production of neutralizing antibodies, CD4^(+) T lymphocytes, and the Th1(IFN-γ) and Th2(IL-4 and IL-6)cytokines. We also confirmed that LN16-A provided 100% protection against subtype B aMPV and significantly reduced viral shedding and turbinate inflammation. Our findings suggest that the LN16-A strain is a promising live attenuated vaccine candidate that can prevent infection with subtype B aMPV.
基金supported by the National Key Research and Development Program of China(2021YFF1000303)the National Nature Science Foundation of China(32072073,32001500,and 32101777)the Sichuan Science and Technology Program,China(2021JDTD0004 and 2021YJ0476)。
文摘Genetic transformation has been an effective technology for improving the agronomic traits of maize.However,it is highly reliant on the use of embryonic callus(EC)and shows a serious genotype dependence.In this study,we performed genomic sequencing for 80 core maize germplasms and constructed a high-density genomic variation map using our newly developed pipeline(MQ2Gpipe).Based on the induction rate of EC(REC),these inbred lines were categorized into three subpopulations.The low-REC germplasms displayed more abundant genetic diversity than the high-REC germplasms.By integrating a genome-wide selective signature screen and region-based association analysis,we revealed 95.23 Mb of selective regions and 43 REC-associated variants.These variants had phenotypic variance explained values ranging between 21.46 and 49.46%.In total,103 candidate genes were identified within the linkage disequilibrium regions of these REC-associated loci.These genes mainly participate in regulation of the cell cycle,regulation of cytokinesis,and other functions,among which MYB15 and EMB2745 were located within the previously reported QTL for EC induction.Numerous leaf area-associated variants with large effects were closely linked to several REC-related loci,implying a potential synergistic selection of REC and leaf size during modern maize breeding.
文摘Stellar spectral classification is crucial in astronomical data analysis.However,existing studies are often limited by the uneven distribution of stellar samples,posing challenges in practical applications.Even when balancing stellar categories and their numbers,there is room for improvement in classification accuracy.This study introduces a Continuous Wavelet Transform using the Super Morlet wavelet to convert stellar spectra into wavelet images.A novel neural network,the Stellar Feature Network,is proposed for classifying these images.Stellar spectra from Large Sky Area Multi-Object Fiber Spectroscopic Telescope DR9,encompassing five equal categories(B,A,F,G,K),were used.Comparative experiments validate the effectiveness of the proposed methods and network,achieving significant improvements in classification accuracy.
基金supported by the Office of Scientific Research of Shandong Vocational and Technical University of International Studies.
文摘This review focuses on thermodynamic and physical parameters,synthesis methods,and reported phases of Magnesium(Mg)containing high-entropy alloys(HEAs).Statistical data of publications concerning Mg-containing HEAs were collected and analyzed.Data on the chemical elements included in Mg-containing HEAs,their theoretical end experimental densities,thermodynamic parameters,physical parameters,fabricated techniques and reported phases were also collected and discussed.On the basis of this information,a new classification for HEAs was proposed.It is also shown that the existing thermodynamic parameters cannot accurately predict the formation of a single phase solid solution for Mg-containing HEAs.The physical parameters of Mg-containing HEAs are within a wide range,and most of the synthesized Mg-containing HEAs have a complex multiphase structure.
文摘Background:The high incidence of gallstone recurrence was a major concern for laparoscopic gallbladderpreserving surgery.This study aimed to investigate the risk factors for gallstone recurrence after gallbladder-preserving surgery and to establish an individualized nomogram model to predict the risk of gallstone recurrence.Methods:The clinicopathological and follow-up data of 183 patients who were initially diagnosed with gallstones and treated with gallbladder-preserving surgery at our hospital from January 2012 to January 2019 were retrospectively collected.The independent predictive factors for gallstone recurrence following gallbladder-preserving surgery were identified by multivariate logistic regression analysis.A nomogram model for the prediction of gallstone recurrence was constructed based on the selected variables.The C-index,receiver operating characteristic(ROC)curve and calibration curve were used to evaluate the predictive power of the nomogram model for gallstone recurrence.Results:During the follow-up period,a total of 65 patients experienced gallstone recurrence,and the recurrence rate was 35.5%.Multivariate logistic regression analysis revealed that the course of gallstones>2 years[odds ratio(OR)=2.567,95%confidence interval(CI):1.270-5.187,P=0.009],symptomatic gallstones(OR=2.589,95%CI:1.059-6.329,P=0.037),multiple gallstones(OR=2.436,95%CI:1.133-5.237,P=0.023),history of acute cholecystitis(OR=2.778,95%CI:1.178-6.549,P=0.020)and a greasy diet(OR=2.319,95%CI:1.186-4.535,P=0.014)were independent risk factors for gallstone recurrence after gallbladder-preserving surgery.A nomogram model for predicting the recurrence of gallstones was established based on the above five variables.The results showed that the C-index of the nomogram model was 0.692,suggesting it was valuable to predict gallstone recurrence.Moreover,the calibration curve showed good consistency between the predicted probability and actual probability.Conclusions:The nomogram model for the prediction of gallstone recurrence might help clinicians develop a proper treatment strategy for patients with gallstones.Gallbladder-preserving surgery should be cautiously considered for patients with high recurrence risks.
基金supported by Key Technology Research and Development Program of Shandong Province,China(2021LZGC014-2)the National Natural Science Foundation of China(32172115)the National Modern Agriculture Industry Technology System,China(CARS02-21)。
文摘Ear differentiation,grain development and their interaction with factors in the growing environment,such as temperature,solar radiation and precipitation,greatly influence grain number and grain weight,and ultimately affect summer maize production.In this study,field experiments involving different sowing dates were conducted over three years to evaluate the effects of temperature factors,average solar radiation and total precipitation on the growth process,ear differentiation,fertilization characteristics,grain filling and yield of summer maize varieties with different growth durations.Four hybrids were evaluated in Huang-Huai-Hai Plain(HHHP),China from 2018 to 2020 with five different sowing dates.The results showed that the grain yield formation of summer maize was strongly impacted by the environment from the silking(R1)to milking(R3)stage.Average minimum temperature(AT_(min))was the key environmental factor that determined yield.Reductions in the length of the growing season(r=–0.556,P<0.01)and the total floret number on ear(R^(2)=0.200,P<0.001)were found when AT_(min) was elevated from the emerging(VE)to R1 stage.Both grain-filling rate(R^(2)=0.520,P<0.001)and the floret abortion rate on ear(R^(2)=0.437,P<0.001)showed quadratic relationships with AT_(min) from the R1 to physiological maturity(R6)stage,while the number of days after the R1 stage(r=–0.756,P<0.01)was negatively correlated with AT_(min).An increase in AT_(min) was beneficial for the promotion of yield when it did not exceeded a certain level(above 23°C during the R1–R3 stage and 20–21°C during the R1-R6 stage).Enhanced solar radiation and precipitation during R1–R6 increased the grain-filling rate(R^(2)=0.562,P<0.001 and R^(2)=0.229,P<0.05,respectively).Compared with short-season hybrids,full-season hybrids showed much greater suitability for a critical environment.The coordinated regulation of AT_(min),ear differentiation and grain development at the pre-and post-silking stages improved maize yield by increasing total floret number and grain-filling rate,and by reducing the floret abortion rate on ear.
基金supported by the National Natural Science Foundation of China(Nos.82170426 and 22078193)Double Thousand Plan of Jiangxi Province(Nos.461654,jxsq2019102052).
文摘Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge process to prepare a noblemetal-free MC-60 catalyst containing MoO_(3),Mo_(2)C,and a Mo_(2)C–MoO_(3)interface.In the GOR,MC-60 shows activity as high as 745μA/(mmol/L cm^(2)),considerably higher than those of the Pt/CNT(270μA/(mmol/L cm^(2)))and Au/CNT catalysts(110μA/(mmol/L cm^(2))).In the GOR,the response minimum on MC-60 is as low as 8μmol/L,with a steady-state response time of only 3 s.Moreover,MC-60 has superior stability and anti-interference ability to impurities in the GOR.The better performance of MC-60 in the GOR is attributed to the abundant Mo sites bonding to C and O atoms at the MoO_(3)–Mo_(2)C interface.These Mo sites create active sites for promoting glucose adsorption and oxidation,enhancing MC-60 performance in the GOR.Thus,these results help to fabricate more effi cient noble-metal-free catalysts for the fabrication of glucose-based biofuel cells.
基金financially supported by the Industrial Technology Innovation Program of IMAST(No.2023JSYD 01003)the National Natural Science Foundation of China(Nos.52104292 and U2341209)。
文摘Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to this endeavor.This review systematically summarizes the impact of built-in electric fields on enhancing charge separation and transfer mechanisms,focusing on the modulation of built-in electric fields in terms of depth and orderliness.First,mechanisms and tuning strategies for built-in electric fields are explored.Then,the state-of-the-art works regarding built-in electric fields for modulating charge separation and transfer are summarized and categorized according to surface and interface depth.Finally,current strategies for constructing bulk built-in electric fields in photoelectrodes are explored,and insights into future developments for enhancing charge separation and transfer in high-performance photoelectrochemical applications are provided.
基金supported by the National Natural Science Foundation of China(72071143)。
文摘Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully automated cars(i.e.,driverless cars).An interesting question is whether users are responsible for the accidents of these cars.Normative ethical and legal analyses frequently argue that individuals should not bear responsibility for harm beyond their control.Here,we consider human judgment of responsibility for accidents involving fully automated cars through three studies with seven experiments(N=2668).We compared the responsibility attributed to the occupants in three conditions:an owner in his private fully automated car,a passenger in a driverless robotaxi,and a passenger in a conventional taxi,where none of these three occupants have direct vehicle control over the involved vehicles that cause identical pedestrian injury.In contrast to normative analyses,we show that the occupants of driverless cars(private cars and robotaxis)are attributed more responsibility than conventional taxi passengers.This dilemma is robust across different contexts(e.g.,participants from China vs the Republic of Korea,participants with first-vs third-person perspectives,and occupant presence vs absence).Furthermore,we observe that this is not due to the perception that these occupants have greater control over driving but because they are more expected to foresee the potential consequences of using driverless cars.Our findings suggest that when driverless vehicles(private cars and taxis)cause harm,their users may face more social pressure,which public discourse and legal regulations should manage appropriately.
基金supported by the Research Foundation of Ningbo No.2 Hospital (2023HMKY49)Ningbo Key Support Medical Discipline (2022-F16)。
文摘BACKGROUND:Chlorfenapyr is used to kill insects that are resistant to organophosphorus insecticides.Chlorfenapyr poisoning has a high mortality rate and is difficult to treat.This article aims to review the mechanisms,clinical presentations,and treatment strategies for chlorfenapyr poisoning.DATA RESOURCES:We conducted a review of the literature using PubMed,Web of Science,and SpringerLink from their beginnings to the end of October 2023.The inclusion criteria were systematic reviews,clinical guidelines,retrospective studies,and case reports on chlorfenapyr poisoning that focused on its mechanisms,clinical presentations,and treatment strategies.The references in the included studies were also examined to identify additional sources.RESULTS:We included 57 studies in this review.Chlorfenapyr can be degraded into tralopyril,which is more toxic and reduces energy production by inhibiting the conversion of adenosine diphosphate to adenosine triphosphate.High fever and altered mental status are characteristic clinical presentations of chlorfenapyr poisoning.Once it occurs,respiratory failure occurs immediately,ultimately leading to cardiac arrest and death.Chlorfenapyr poisoning is diflcult to treat,and there is no specific antidote.CONCLUSION:Chlorfenapyr is a new pyrrole pesticide.Although it has been identified as a moderately toxic pesticide by the World Health Organization(WHO),the mortality rate of poisoned patients is extremely high.There is no specific antidote for chlorfenapyr poisoning.Therefore,based on the literature review,future efforts to explore rapid and effective detoxification methods,reconstitute intracellular oxidative phosphorylation couplings,identify early biomarkers of chlorfenapyr poisoning,and block the conversion of chlorfenapyr to tralopyril may be helpful for emergency physicians in the diagnosis and treatment of this disease.
基金supported by Affiliated Hospital of Youjiang Medical University for Nationalities(No.Y20212615).
文摘Objective:To explore the mechanism by which icariin alleviates viral myocarditis.Methods:CVB3-induced cardiomyocytes were used as an in vitro model of viral myocarditis to assess the effects of icariin treatment on cell viability,inflammation,and apoptosis.Moreover,the effects of icariin on ferroptosis and TLR4 signaling were assessed.After AC16 cells were transfected with TLR4 overexpression plasmids,the role of TLR4 in mediating the regulatory effect of icariin in viral myocarditis was investigated.Results:Icariin significantly elevated cell viability and reduced inflammatory factors TNF-α,IL-1β,IL-6,and IL-18.Flow cytometry revealed that icariin decreased apoptosis rate,and the protein expression of Bax and cleaved caspase 3 and 9 in CVB3-induced cardiomyocytes.Additionally,it suppressed ferroptosis including lipid peroxidation and ferrous ion,as well as the TLR4 signaling.However,TLR4 overexpression abrogated the modulatory effects of icariin.Conclusions:Icariin mitigates CVB3-induced myocardial injury by inhibiting TLR4-mediated ferroptosis.Further animal study is needed to verify its efficacy.
基金supported by the Hebei Medical Science Research Project(20242002)S&T Program of Hebei(21377722D)the National Natural Science Foundation of China(82001145)。
文摘Short-chain fatty acids(SCFAs)are major metabolites produced by the gut microbiota through the fermentation of dietary fiber,and they have garnered significant attention due to their close association with host health.As important mediators between the gut microbiota and the host,SCFAs serve as energy substrates for intestinal epithelial cells and maintain homeostasis in host immune and energy metabolism by influencing host epigenetics,activating G protein-coupled receptors,and inhibiting pathogenic microbial infections.This review provides a comprehensive summary of SCFAs synthesis and metabolism and offering an overview of the latest research progress on their roles in protecting gut health,enhancing energy metabolism,mitigating diseases such as cancer,obesity,and diabetes,modulating the gut-brain axis and gut-l ung axis,and promoting bone health.
基金supported by the Guizhou Provincial Traditional Chinese Medicine Administration Traditional Chinese Medicine and Ethnic Medicine Scientific Research Project(Project number:QZYY-2023-013).
文摘Background:Chronic wounds pose a significant surgical challenge,often requiring traditional treatments with limited efficacy.This study explores the promising impact of Shixiang plaster,a classic Chinese ointment,on wound healing.We investigated the cluster of differentiation 31(CD31)expression,serum fibronectin(FN),and vascular endothelial growth factor(VEGF)levels in SPF rats with induced wounds to elucidate the mechanism behind Shixiang plaster’s effectiveness.We investigated the effect and explored the role of Shixiang plaster on the expression of CD31,serum FN,and VEGF in chronic wounds.Methods:The study involved 36 SPF rats divided into model,rb-bFGF,and Shixiang plaster groups.Penicillin was injected into the rats before modelling for 3 days to prevent infection.The skin was excised 2 cm below the horizontal line of the inferior border of the shoulder bone in the middle of the rat column up to the deep fascial layer and inoculated with a certain concentration of Staphylococcus aureus;the wound was covered aseptically for 3 days.The trauma area of the rats was observed at 3,7,and 14 days,respectively.Histopathology was observed using haematoxylin eosin and Masson staining.CD31 expression was detected using immunohistochemistry staining.FN and VEGF expression was detected using serum ELISA.Statistical analyses were carried out by the method of SPSS.Results:Regarding wound morphology,at 3 days,the recovery area of the Shixiang plaster group was larger than that of the other two groups,at 7 days,the wound healing rate of the Shixiang plaster group was significantly higher,and at 14 days,the wounds of the Shixiang plaster group had been mostly healed,with a healing rate of 98.3%.Haematoxylin eosin staining revealed a large amount of granulation tissue at 3 days in the Shixiang plaster group,and the epidermal scales disappeared at 14 days,with thinner epidermal thickness at 1 lesion and a large reduction in inflammatory cell infiltration.Masson staining showed that at 3,7,and 14 days,blue staining was the most abundant and deeper in the Shixiang plaster group,with richer collagen and a compact tissue matrix.Immunohistochemical testing showed strong positive expression of CD31 in the Shixiang plaster group,with abundant neovascularisation and large official lumens extending towards the surface of the wound.Statistically significant elevated expression of FN at 7 and 14 days was determined by ELISA in the Shixiang plaster group,and VEGF expression was significantly increased at 7 days,but expression had been expressed at a low level at 14 days.Conclusion:Shixiang plaster exhibits remarkable efficacy in healing chronic wounds.The proposed mechanism involves FN’s promotion of angiogenesis and cell proliferation,VEGF’s impact on angiogenesis and inflammation,and CD31’s regulatory role in inhibiting inflammation while promoting angiogenesis.
基金Supported by CAMS Innovation Fund for Medical Sciences,No.2023-I2M-C&T-B-043 and No.2021-I2M-1-002National High Level Hospital Clinical Research Funding,No.2022-PUMCH-B-015+1 种基金Beijing Municipal Natural Science Foundation,No.M22014National Natural Science Foundation of China,No.91846106.
文摘BACKGROUND Since adverse events during treatment affect adherence and subsequent glycemic control,understanding the safety profile of oral anti-diabetic drugs is imperative for type 2 diabetes mellitus(T2DM)therapy.AIM To evaluate the risk of infection in patients with T2DM treated with dipeptidyl-peptidase 4(DPP-4)inhibitors.METHODS Electronic databases were searched.The selection criteria included randomized controlled trials focused on cardiovascular outcomes.In these studies,the effects of DPP-4 inhibitors were directly compared to those of either other active anti-diabetic treatments or placebo.Six trials involving 53616 patients were deemed eligible.We calculated aggregate relative risks employing both random-effects and fixed-effects approaches,contingent upon the context.RESULTS The application of DPP-4 inhibitors showed no significant link to the overall infection risk[0.98(0.95,1.02)]or the risk of serious infections[0.96(0.85,1.08)],additionally,no significant associations were found with opportunistic infections[0.69(0.46,1.04)],site-specific infections[respiratory infection 0.99(0.96,1.03),urinary tract infections 1.02(0.95,1.10),abdominal and gastrointestinal infections 1.02(0.83,1.25),skin structure and soft tissue infections 0.81(0.60,1.09),bone infections 0.96(0.68,1.36),and bloodstream infections 0.97(0.80,1.18)].CONCLUSION This meta-analysis of data from cardiovascular outcome trials revealed no heightened infection risk in patients undergoing DPP-4 inhibitor therapy compared to control cohorts.