Large-scale inverted-V channels of upflowing oxygen ions are frequently identified in data collected by Cluster,at all local times,near the open-closed field line boundary over Earth’s high-latitude ionosphere-occur ...Large-scale inverted-V channels of upflowing oxygen ions are frequently identified in data collected by Cluster,at all local times,near the open-closed field line boundary over Earth’s high-latitude ionosphere-occur with downward propagating MHD Alfvén waves which have cascaded into kinetic regimes of plasma.The transverse acceleration of the oxygen ions in the center of these structures is interpreted as the integrated energization by these waves along the channels.Also observed within the channels are upward parallel electric fields,a key characteristic of kinetic Alfvén waves,which may contribute not only to lifting the ions but also to precipitating aurora electrons that might initiate ion upflow in the ionosphere below.Statistics on five-year observations of Cluster show that the channels typically form during geomagnetic perturbations,particularly when solar-wind dynamic pressure is high or highly fluctuated.Near the open-closed field line boundary,the stronger the wave power,the higher the upward oxygen flux and the higher the beam energy,indicating that these waves provide a simple but efficient way to drive oxygen upflows.展开更多
We report an unusual non-storm erosion event of outer zone MeV electron distribution during three successive solar wind number density enhancements(SWDEs)on November 27-30,2015.Loss of MeV electrons and energy-depende...We report an unusual non-storm erosion event of outer zone MeV electron distribution during three successive solar wind number density enhancements(SWDEs)on November 27-30,2015.Loss of MeV electrons and energy-dependent narrowing of electron pitch angle distributions(PAD)first developed at L^(*)=5.5 and then moved down to L^(*)<4.According to the evolution of the electron phase space density(PSD)profile,losses of electrons with small pitch angles at L^(*)>4 during SWDE1 are mainly due to outward radial diffusion.However during SWDE2&3,scattering loss due to EMIC waves is dominant at 4<L^(*)<5.As for electrons with large pitch angles,outward radial diffusion is the primary loss mechanism throughout all SWDEs which is consistent with the incursion of the Last Closed Drift Shell(LCDS).The inner edge of EMIC wave activity moved from L^(*)~5 to L^(*)~4 and from L~6.4 to L~4.2 from SWDE1 to SWDE2&3,respectively,observed by Van Allen Probes and by ground stations.This is consistent with the inward penetration of anisotropic energetic protons from L^(*)=4.5 to L^(*)=3.5,suggesting that the inward extension of EMIC waves may be driven by the inward injection of anisotropic energetic protons from the dense plasma sheet.展开更多
During geomagnetically active times such as geomagnetic storms,large amounts of energy can be released into the Earth’s magnetosphere and change the ring current intensity.Previous studies showed that significant enh...During geomagnetically active times such as geomagnetic storms,large amounts of energy can be released into the Earth’s magnetosphere and change the ring current intensity.Previous studies showed that significant enhancement of the ring current was related to geomagnetic storms,while few studies have examined substorm effects on ring current dynamics.In this study,we examine the ring current variation during non-storm time(SYM-H>−50 nT)substorms,especially during super-substorms(AE>1000 nT).We perform a statistical analysis of ring current plasma pressure and number flux of various ion species under different substorm conditions,based on Van Allen Probe observations.The plasma pressure and ion fluxes of the ring current increased dramatically during supersubstorms,while little change was observed for substorms with AE<1000 nT.The results shown in this study indicate that a non-storm time super-substorm may also have a significant contribution to the ring current.展开更多
The purpose of this paper is to understand how low energy plasmaspheric electrons respond to ULF waves excited by interplanetary shocks impinging on magnetosphere. It is found that both energy and pitch angle disperse...The purpose of this paper is to understand how low energy plasmaspheric electrons respond to ULF waves excited by interplanetary shocks impinging on magnetosphere. It is found that both energy and pitch angle dispersed plasmaspheric electrons with energy of a few eV to tens of eV can be generated simultaneously by the interplanetary shock. The subsequent period of successive dispersion signatures is around 40 s and is consistent with the ULF wave period(third harmonic). By tracing back the energy and pitch angle dispersion signatures, the position of the electron injection region is found to be off-equator at around -32° in the southern hemisphere. This can be explained as the result of injected electrons being accelerated by higher harmonic ULF waves(e.g. third harmonic) which carry a larger amplitude electric field off-equator. The dispersion signatures are due to the flux modulations(or accelerations) of " local" plasmaspheric electrons rather than electrons from the ionosphere. With the observed wave-borne large electric field excited by the interplanetary shock impact, the kinetic energy can increase to a maximum of 23 percent in one bouncing cycle for plasmaspheric electrons satisfying the drift-bounce resonance condition by taking account of both the corotating drift and bounce motion of the local plasmaspheric electron.展开更多
Earth’s aurora is a luminescent phenomenon generated by the interaction between magnetospheric precipitating particles and the upper atmosphere;it plays an important role in magnetosphere–ionosphere(M-I)coupling.The...Earth’s aurora is a luminescent phenomenon generated by the interaction between magnetospheric precipitating particles and the upper atmosphere;it plays an important role in magnetosphere–ionosphere(M-I)coupling.The transpolar arc(TPA)is a discrete auroral arc distributed in the noon-midnight direction poleward of the auroral oval and connects the dayside to the nightside sectors of the auroral oval.Studying the seasonal variation of TPA events can help us better understand the long-term variation of the interaction between the solar wind,the magnetosphere,and M-I coupling.However,a statistical study of the seasonal variation of TPA incidence has not previously been carried out.In this paper,we have identified 532 TPA events from the IMAGE database(2000–2005)and the Polar database(1996–2002),and calculated the incidence of TPA events for different months.We find a semiannual variation in TPA incidence.Clear peaks in the incidence of TPAs occur in March and September;a less pronounced peak appears in November.We also examine seasonal variation in the northward interplanetary magnetic field(IMF)over the same time period.The intensity and occurrence rate of the northward IMF exhibit patterns similar to that of the TPA incidence.Having studied IMF Bz before TPA onset,we find that strong and steady northward IMF conditions are favorable for TPA formation.We suggest that the semiannual variation observed in TPA incidence may be related to the Russell–McPherron(R-M)effect due to the projection effect of the IMF By under northward IMF conditions.展开更多
Cluster satellites observed three successive outflowing ion beams on 28 March, 2001. It is generally accepted that these ion beams, composed of H^+, He^+, and O^+ ions, with three inverted-V structures in their energy...Cluster satellites observed three successive outflowing ion beams on 28 March, 2001. It is generally accepted that these ion beams, composed of H^+, He^+, and O^+ ions, with three inverted-V structures in their energy spectra, are produced by acceleration through U-shaped potential structures. By eliminating the background ion population and employing Maxwelling fitting, we find that ions coming from the center of the potential structure have higher temperature than those from the flanks. Higher temperature of O^+ and He+compared to that of H^+ indicates that heavy ions are preferentially heated; we further infer that the heating efficiencies of O^+ and He^+ ions differ between the center and edges of the U-shaped potential structures. Estimation based on pitch angle observations shows that heating may also occur at an altitude above the upper boundary of the auroral acceleration region(AAR), where these beams are generally thought to be formed.展开更多
Earth system can be categorized into three parts, solid Earth system, surface Earth system, and Sun-Earth space system. These three subsystems not only have mutual transmission and coupling relationships in both energ...Earth system can be categorized into three parts, solid Earth system, surface Earth system, and Sun-Earth space system. These three subsystems not only have mutual transmission and coupling relationships in both energy and matter but also involve multiple scales from microscopic to macroscopic. Earth system science is characterized by its globality and unity with a holistic view and a systematic view at multiple scales in both space and time. It focuses not only on the physical, chemical and biological interactions between various geospheres but also on the properties, behaviors, processes, and mechanisms of the entire Earth and its spheres. Although significant progress has been made in the study of internal disciplines of these three subsystems,there is still insufficient understanding of their overall behavior and interactions between individuals, thus facing challenges of different types and levels. The solid Earth system is composed of the crust, mantle, and core. Existing observational techniques struggle to penetrate deep into the mantle, making direct observation and data acquisition difficult;the extreme environments within Earth, such as high temperature, high pressure, and strong magnetic fields, also pose great challenges to observational equipment and scientific experiments. The surface Earth system is an open complex mega-system, in which there are complex interactions and feedback mechanisms among its geospheres(such as atmosphere, hydrosphere, biosphere, pedosphere and lithosphere), leading to difficulties in understanding of its overall behavior and long-term evolution. Biological activities have become increasingly significant in affecting the surface Earth system. The coupling between the internal and external Earth systems becomes more complex. Distinguishing and quantifying the impacts of Earth spherical interactions and biological activities on the surface Earth system is a major challenge. The Sun-Earth space system involves multiple physical processes such as solar activity, Earth's magnetic field, atmosphere, and space weather. Solar activity significantly affects the Earth's space environment, but existing observational and reconstruction methods and prediction models still lack precision and timeliness.Thus it is important to improve the prediction capability of solar activity and reduce the impact of space weather disasters. How to cross different scales and establish coupled models of multiple physical processes is a significant challenge in the study of the Sun-Earth space system. Because the various processes and phenomena within and between these three Earth subsystems often span multiple scales in both space and time and exhibit strong nonlinear characteristics, understanding their behaviors and processes becomes complex and variable, posing great challenges for theoretical modelling and numerical simulation. Therefore,the study of Earth system science requires in-depth interdisciplinary integration to jointly reveal the basic laws and operating mechanisms of Earth system.展开更多
A flapping wave was observed by THEMIS-B(P1)and THEMIS-C(P2)probes on the dawn side of the magnetotail,while the solar wind was generally stable.The magnetic activity was quite weak,suggesting that this flapping wave ...A flapping wave was observed by THEMIS-B(P1)and THEMIS-C(P2)probes on the dawn side of the magnetotail,while the solar wind was generally stable.The magnetic activity was quite weak,suggesting that this flapping wave was generated by an internal instability,which normally occurs during magnetic quiet times.Our analysis shows that the flapping wave was propagating downward with a tail-aligned scale of at least 3.7 R E and did not show much change in shape during its propagation from P1 to P2.Correlation analysis employed to estimate the time lag between the corresponding half waveforms of P1 and P2 shows that the propagating velocities along the current sheet normal directions were close to each other in the beginning,but increased linearly later on.The average wavelength of the flapping wave is approximately 4 R E.Theoretical analysis suggests that the ballooning type wave model may not be the mechanism for the observed flapping wave,but that the magnetic double-gradient instability model is a more plausible candidate.展开更多
The motion and deceleration processes of plasma sheet high-speed flows have great significance to magnetospheric particle acceleration,magnetic field perturbation,magnetic flux transport,triggering of substorm,and the...The motion and deceleration processes of plasma sheet high-speed flows have great significance to magnetospheric particle acceleration,magnetic field perturbation,magnetic flux transport,triggering of substorm,and the current system formation in the magnetotail.From February to April 2009,two satellites of the Time History of Events and Macroscale Interactions during Substorms mission,THA and THE,were often separated largely in Z direction,but had small X and Y separations.Such special configuration allows simultaneous observations of highspeed flows at the center and boundary of the plasma sheet.Based on selected case study and statistical analysis,it is found that for about 89%of the events we selected,the probe further away from the neutral sheet observed the high-speed flow earlier than the one close to the center,and the flow is mainly field aligned.And for about 95%events the probe further away from the neutral sheet observed higher X component of the plasma flow.With the hypothesis that parallel flow keeps the same speed during its earthward propagation while central plasma sheet stream uniformly or suddenly brakes on its way to the earth,we deduced the position where the deceleration begins to be between 13 Re and 17 Re downtail,where thenear-earth reconnection is supposed to occur.In addition,our statistical results show that dipolarization fronts observed in the central plasma sheet are more prominent than those observed in the plasma sheet boundary layer ahead of the high-speed flow.展开更多
This review paper summarizes the research of Mercury’s magnetosphere in the Post-MESSENGER era and compares its dynamics to those in other planetary magnetospheres,especially to those in Earth’s magnetosphere.This r...This review paper summarizes the research of Mercury’s magnetosphere in the Post-MESSENGER era and compares its dynamics to those in other planetary magnetospheres,especially to those in Earth’s magnetosphere.This review starts by introducing the planet Mercury,including its interplanetary environment,magnetosphere,exosphere,and conducting core.The frequent and intense magnetic reconnection on the dayside magnetopause,which is represented by the flux transfer event"shower",is reviewed on how they depend on magnetosheath plasma β and magnetic shear angle across the magnetopause,followed by how it contributes to the flux circulation and magnetosphere-surface-exosphere coupling.In the next,Mercury’s magnetosphere under extreme solar events,including the core induction and the reconnection erosion on the dayside magnetosphere,as well as the responses of the nightside magnetosphere,are reviewed.Then,the dawn-dusk properties of the plasma sheet,including the features of the ions,the structure of the current sheet,and the dynamics of magnetic reconnection,are summarized.The last topic is devoted to the particle energization in Mercury’s magnetosphere,which includes the energization of the Kelvin-Helmholtz waves on the magnetopause boundaries,reconnection-generated magnetic structures,and the cross-tail electric field.In each chapter,the last section discusses the open questions related to each topic,which can be considered by the simulations and the future spacecraft mission.We end this paper by summarizing the future Bepi Colombo opportunities,which is a joint mission of ESA and JAXA and is en route to Mercury.展开更多
Using in situ observations from THEMIS A, D and E during the 2008–2011 tail season, we present a statistical study of the evolution of pressure gradients in the near-Earth tail during bursty bulk flow(BBF) convection...Using in situ observations from THEMIS A, D and E during the 2008–2011 tail season, we present a statistical study of the evolution of pressure gradients in the near-Earth tail during bursty bulk flow(BBF) convection.We identified 138 substorm BBFs and 2,197 non-substorm BBFs for this study. We found that both the pressure and the BZcomponent of the magnetic field were enhanced at the arrival of BBFs at the spacecraft locations. We suggest that the increase of BZduring non-substorm BBFs is associated with flux pile-up. However, the much stronger enhancement of BZduring substorm BBFs implies the occurrence of magnetic field dipolarization which is caused by both the flux pile-up process and near-Earth current disruption. Furthermore, a bow-wave-like high pressure appears to be formed at the arrival of substorm BBFs,which is responsible for the formation of region-1-sense FACs. The azimuthal pressure gradient associated with the arrival of substorm BBFs lasts for about 5 min. The enhanced pressure gradient associated with the bow waveis caused by the braking and diversion of the Earthward flow in the inner plasma sheet. The results from this statistical study suggest that the braking and azimuthal diversion of BBFs may commonly create azimuthal pressure gradients, which are related to the formation of the FAC of the substorm current wedge.展开更多
t Magnetic null points and flux ropes play important roles in the three-dimensional process of magnetic reconnection. In this study, a cluster of null points are reconstructed in the reconnection region in the magneto...t Magnetic null points and flux ropes play important roles in the three-dimensional process of magnetic reconnection. In this study, a cluster of null points are reconstructed in the reconnection region in the magnetotail by applying a fitting-reconstruction method to measurements from the Cluster mission. The number of recon- structed null points varies rapidly, presenting a turbulentlike evolution of the magnetic structure. The electron density and the flux of the accelerated electrons were enhanced in this turbulent-like region. During this unstable reconnection process, a B-As-B null structure was formed, showing flux rope features and resembling a secondary island in the observation.展开更多
基金supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences, Grant No. XDB41000000the National Natural Science Foundation of China (41731068, 41941001)
文摘Large-scale inverted-V channels of upflowing oxygen ions are frequently identified in data collected by Cluster,at all local times,near the open-closed field line boundary over Earth’s high-latitude ionosphere-occur with downward propagating MHD Alfvén waves which have cascaded into kinetic regimes of plasma.The transverse acceleration of the oxygen ions in the center of these structures is interpreted as the integrated energization by these waves along the channels.Also observed within the channels are upward parallel electric fields,a key characteristic of kinetic Alfvén waves,which may contribute not only to lifting the ions but also to precipitating aurora electrons that might initiate ion upflow in the ionosphere below.Statistics on five-year observations of Cluster show that the channels typically form during geomagnetic perturbations,particularly when solar-wind dynamic pressure is high or highly fluctuated.Near the open-closed field line boundary,the stronger the wave power,the higher the upward oxygen flux and the higher the beam energy,indicating that these waves provide a simple but efficient way to drive oxygen upflows.
基金supported by NSFC grants 41474139,41731068,and 41674164the support from the China Postdoctoral Science Foundation through grant 2019 M650316。
文摘We report an unusual non-storm erosion event of outer zone MeV electron distribution during three successive solar wind number density enhancements(SWDEs)on November 27-30,2015.Loss of MeV electrons and energy-dependent narrowing of electron pitch angle distributions(PAD)first developed at L^(*)=5.5 and then moved down to L^(*)<4.According to the evolution of the electron phase space density(PSD)profile,losses of electrons with small pitch angles at L^(*)>4 during SWDE1 are mainly due to outward radial diffusion.However during SWDE2&3,scattering loss due to EMIC waves is dominant at 4<L^(*)<5.As for electrons with large pitch angles,outward radial diffusion is the primary loss mechanism throughout all SWDEs which is consistent with the incursion of the Last Closed Drift Shell(LCDS).The inner edge of EMIC wave activity moved from L^(*)~5 to L^(*)~4 and from L~6.4 to L~4.2 from SWDE1 to SWDE2&3,respectively,observed by Van Allen Probes and by ground stations.This is consistent with the inward penetration of anisotropic energetic protons from L^(*)=4.5 to L^(*)=3.5,suggesting that the inward extension of EMIC waves may be driven by the inward injection of anisotropic energetic protons from the dense plasma sheet.
基金supported by a research grant of China National Space Administration project D020303,NSFC Grant Numbers:41974191the National Key R&D Program of China 2020YFE0202100。
文摘During geomagnetically active times such as geomagnetic storms,large amounts of energy can be released into the Earth’s magnetosphere and change the ring current intensity.Previous studies showed that significant enhancement of the ring current was related to geomagnetic storms,while few studies have examined substorm effects on ring current dynamics.In this study,we examine the ring current variation during non-storm time(SYM-H>−50 nT)substorms,especially during super-substorms(AE>1000 nT).We perform a statistical analysis of ring current plasma pressure and number flux of various ion species under different substorm conditions,based on Van Allen Probe observations.The plasma pressure and ion fluxes of the ring current increased dramatically during supersubstorms,while little change was observed for substorms with AE<1000 nT.The results shown in this study indicate that a non-storm time super-substorm may also have a significant contribution to the ring current.
基金supported by National Natural Science Foundation of China National Natural Science Foundation of China (41421003 and 41627805)
文摘The purpose of this paper is to understand how low energy plasmaspheric electrons respond to ULF waves excited by interplanetary shocks impinging on magnetosphere. It is found that both energy and pitch angle dispersed plasmaspheric electrons with energy of a few eV to tens of eV can be generated simultaneously by the interplanetary shock. The subsequent period of successive dispersion signatures is around 40 s and is consistent with the ULF wave period(third harmonic). By tracing back the energy and pitch angle dispersion signatures, the position of the electron injection region is found to be off-equator at around -32° in the southern hemisphere. This can be explained as the result of injected electrons being accelerated by higher harmonic ULF waves(e.g. third harmonic) which carry a larger amplitude electric field off-equator. The dispersion signatures are due to the flux modulations(or accelerations) of " local" plasmaspheric electrons rather than electrons from the ionosphere. With the observed wave-borne large electric field excited by the interplanetary shock impact, the kinetic energy can increase to a maximum of 23 percent in one bouncing cycle for plasmaspheric electrons satisfying the drift-bounce resonance condition by taking account of both the corotating drift and bounce motion of the local plasmaspheric electron.
基金We acknowledge use of OMNI data obtained from the OMNIWeb service at http://omniweb.gsfc.nasa.gov.We thank the Polar UVI team for providing UV images.The IMAGE FUV data were provided by the NASA Space Science Data Center(NSSDC)This work was supported by the National Natural Science Foundation of China(Grants 41961130382,41731068 and 41941001)+1 种基金the Royal Society NAF\R1\191047,International Space Science Institute(ISSI)the young scholar plan of Shandong University at Weihai(2017WHWLJH08).
文摘Earth’s aurora is a luminescent phenomenon generated by the interaction between magnetospheric precipitating particles and the upper atmosphere;it plays an important role in magnetosphere–ionosphere(M-I)coupling.The transpolar arc(TPA)is a discrete auroral arc distributed in the noon-midnight direction poleward of the auroral oval and connects the dayside to the nightside sectors of the auroral oval.Studying the seasonal variation of TPA events can help us better understand the long-term variation of the interaction between the solar wind,the magnetosphere,and M-I coupling.However,a statistical study of the seasonal variation of TPA incidence has not previously been carried out.In this paper,we have identified 532 TPA events from the IMAGE database(2000–2005)and the Polar database(1996–2002),and calculated the incidence of TPA events for different months.We find a semiannual variation in TPA incidence.Clear peaks in the incidence of TPAs occur in March and September;a less pronounced peak appears in November.We also examine seasonal variation in the northward interplanetary magnetic field(IMF)over the same time period.The intensity and occurrence rate of the northward IMF exhibit patterns similar to that of the TPA incidence.Having studied IMF Bz before TPA onset,we find that strong and steady northward IMF conditions are favorable for TPA formation.We suggest that the semiannual variation observed in TPA incidence may be related to the Russell–McPherron(R-M)effect due to the projection effect of the IMF By under northward IMF conditions.
基金supported by the National Natural Science Foundation of China(grants 41474139,41731068,and 41704163)
文摘Cluster satellites observed three successive outflowing ion beams on 28 March, 2001. It is generally accepted that these ion beams, composed of H^+, He^+, and O^+ ions, with three inverted-V structures in their energy spectra, are produced by acceleration through U-shaped potential structures. By eliminating the background ion population and employing Maxwelling fitting, we find that ions coming from the center of the potential structure have higher temperature than those from the flanks. Higher temperature of O^+ and He+compared to that of H^+ indicates that heavy ions are preferentially heated; we further infer that the heating efficiencies of O^+ and He^+ ions differ between the center and edges of the U-shaped potential structures. Estimation based on pitch angle observations shows that heating may also occur at an altitude above the upper boundary of the auroral acceleration region(AAR), where these beams are generally thought to be formed.
基金supported by the National Natural Science Foundation of China (Grant Nos.92155306 and L2224031)。
文摘Earth system can be categorized into three parts, solid Earth system, surface Earth system, and Sun-Earth space system. These three subsystems not only have mutual transmission and coupling relationships in both energy and matter but also involve multiple scales from microscopic to macroscopic. Earth system science is characterized by its globality and unity with a holistic view and a systematic view at multiple scales in both space and time. It focuses not only on the physical, chemical and biological interactions between various geospheres but also on the properties, behaviors, processes, and mechanisms of the entire Earth and its spheres. Although significant progress has been made in the study of internal disciplines of these three subsystems,there is still insufficient understanding of their overall behavior and interactions between individuals, thus facing challenges of different types and levels. The solid Earth system is composed of the crust, mantle, and core. Existing observational techniques struggle to penetrate deep into the mantle, making direct observation and data acquisition difficult;the extreme environments within Earth, such as high temperature, high pressure, and strong magnetic fields, also pose great challenges to observational equipment and scientific experiments. The surface Earth system is an open complex mega-system, in which there are complex interactions and feedback mechanisms among its geospheres(such as atmosphere, hydrosphere, biosphere, pedosphere and lithosphere), leading to difficulties in understanding of its overall behavior and long-term evolution. Biological activities have become increasingly significant in affecting the surface Earth system. The coupling between the internal and external Earth systems becomes more complex. Distinguishing and quantifying the impacts of Earth spherical interactions and biological activities on the surface Earth system is a major challenge. The Sun-Earth space system involves multiple physical processes such as solar activity, Earth's magnetic field, atmosphere, and space weather. Solar activity significantly affects the Earth's space environment, but existing observational and reconstruction methods and prediction models still lack precision and timeliness.Thus it is important to improve the prediction capability of solar activity and reduce the impact of space weather disasters. How to cross different scales and establish coupled models of multiple physical processes is a significant challenge in the study of the Sun-Earth space system. Because the various processes and phenomena within and between these three Earth subsystems often span multiple scales in both space and time and exhibit strong nonlinear characteristics, understanding their behaviors and processes becomes complex and variable, posing great challenges for theoretical modelling and numerical simulation. Therefore,the study of Earth system science requires in-depth interdisciplinary integration to jointly reveal the basic laws and operating mechanisms of Earth system.
基金supported by the National Natural Science Foundation of China(41031065,41074106 and 40874086)Shandong Natural Science Foundation(JQ201112)partly by the National Basic Research Program of China(2011CB811404)
文摘A flapping wave was observed by THEMIS-B(P1)and THEMIS-C(P2)probes on the dawn side of the magnetotail,while the solar wind was generally stable.The magnetic activity was quite weak,suggesting that this flapping wave was generated by an internal instability,which normally occurs during magnetic quiet times.Our analysis shows that the flapping wave was propagating downward with a tail-aligned scale of at least 3.7 R E and did not show much change in shape during its propagation from P1 to P2.Correlation analysis employed to estimate the time lag between the corresponding half waveforms of P1 and P2 shows that the propagating velocities along the current sheet normal directions were close to each other in the beginning,but increased linearly later on.The average wavelength of the flapping wave is approximately 4 R E.Theoretical analysis suggests that the ballooning type wave model may not be the mechanism for the observed flapping wave,but that the magnetic double-gradient instability model is a more plausible candidate.
基金supported by the National Natural Science Foundation of China(41031065,41074106,and 40974095)the Shandong Natural Science Foundation(JQ201112)
文摘The motion and deceleration processes of plasma sheet high-speed flows have great significance to magnetospheric particle acceleration,magnetic field perturbation,magnetic flux transport,triggering of substorm,and the current system formation in the magnetotail.From February to April 2009,two satellites of the Time History of Events and Macroscale Interactions during Substorms mission,THA and THE,were often separated largely in Z direction,but had small X and Y separations.Such special configuration allows simultaneous observations of highspeed flows at the center and boundary of the plasma sheet.Based on selected case study and statistical analysis,it is found that for about 89%of the events we selected,the probe further away from the neutral sheet observed the high-speed flow earlier than the one close to the center,and the flow is mainly field aligned.And for about 95%events the probe further away from the neutral sheet observed higher X component of the plasma flow.With the hypothesis that parallel flow keeps the same speed during its earthward propagation while central plasma sheet stream uniformly or suddenly brakes on its way to the earth,we deduced the position where the deceleration begins to be between 13 Re and 17 Re downtail,where thenear-earth reconnection is supposed to occur.In addition,our statistical results show that dipolarization fronts observed in the central plasma sheet are more prominent than those observed in the plasma sheet boundary layer ahead of the high-speed flow.
基金supported by the National Aeronautics and Space Administration(Grant Nos.80NSSC18K1137,80NSSC21K0052)the support of CNES for the Bepi Colombo mission。
文摘This review paper summarizes the research of Mercury’s magnetosphere in the Post-MESSENGER era and compares its dynamics to those in other planetary magnetospheres,especially to those in Earth’s magnetosphere.This review starts by introducing the planet Mercury,including its interplanetary environment,magnetosphere,exosphere,and conducting core.The frequent and intense magnetic reconnection on the dayside magnetopause,which is represented by the flux transfer event"shower",is reviewed on how they depend on magnetosheath plasma β and magnetic shear angle across the magnetopause,followed by how it contributes to the flux circulation and magnetosphere-surface-exosphere coupling.In the next,Mercury’s magnetosphere under extreme solar events,including the core induction and the reconnection erosion on the dayside magnetosphere,as well as the responses of the nightside magnetosphere,are reviewed.Then,the dawn-dusk properties of the plasma sheet,including the features of the ions,the structure of the current sheet,and the dynamics of magnetic reconnection,are summarized.The last topic is devoted to the particle energization in Mercury’s magnetosphere,which includes the energization of the Kelvin-Helmholtz waves on the magnetopause boundaries,reconnection-generated magnetic structures,and the cross-tail electric field.In each chapter,the last section discusses the open questions related to each topic,which can be considered by the simulations and the future spacecraft mission.We end this paper by summarizing the future Bepi Colombo opportunities,which is a joint mission of ESA and JAXA and is en route to Mercury.
基金supported by the National Basic Research Program of China(2014CB845903,2012CB825604)the National Natural Science Foundation of China(41211120176,41274167,41031065,41374166,41330104,41374171)+2 种基金the National R&D Projectsfor Key Scientific Instruments(ZDYZ2012-1-01)UK Science and Technology Facilities Council grant(ST/L005638/1)at UCL/MSSLChina Postdoctoral Science Foundation(2014M550826)
文摘Using in situ observations from THEMIS A, D and E during the 2008–2011 tail season, we present a statistical study of the evolution of pressure gradients in the near-Earth tail during bursty bulk flow(BBF) convection.We identified 138 substorm BBFs and 2,197 non-substorm BBFs for this study. We found that both the pressure and the BZcomponent of the magnetic field were enhanced at the arrival of BBFs at the spacecraft locations. We suggest that the increase of BZduring non-substorm BBFs is associated with flux pile-up. However, the much stronger enhancement of BZduring substorm BBFs implies the occurrence of magnetic field dipolarization which is caused by both the flux pile-up process and near-Earth current disruption. Furthermore, a bow-wave-like high pressure appears to be formed at the arrival of substorm BBFs,which is responsible for the formation of region-1-sense FACs. The azimuthal pressure gradient associated with the arrival of substorm BBFs lasts for about 5 min. The enhanced pressure gradient associated with the bow waveis caused by the braking and diversion of the Earthward flow in the inner plasma sheet. The results from this statistical study suggest that the braking and azimuthal diversion of BBFs may commonly create azimuthal pressure gradients, which are related to the formation of the FAC of the substorm current wedge.
基金supported by the National Natural Science Foundations of China(41274167,41374166,41474139 and41404117)PKU/UCLA Joint Research Institute in Science and Engineering,partly by the European Space Agency 2013–2014 Guest Investigator Programa working group sponsored by ISSI,Bern
文摘t Magnetic null points and flux ropes play important roles in the three-dimensional process of magnetic reconnection. In this study, a cluster of null points are reconstructed in the reconnection region in the magnetotail by applying a fitting-reconstruction method to measurements from the Cluster mission. The number of recon- structed null points varies rapidly, presenting a turbulentlike evolution of the magnetic structure. The electron density and the flux of the accelerated electrons were enhanced in this turbulent-like region. During this unstable reconnection process, a B-As-B null structure was formed, showing flux rope features and resembling a secondary island in the observation.