期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Drivers of spatial structure in thinned forests
1
作者 Zichun Wang Yaoxiang Li +4 位作者 Guangyu Wang Zheyu Zhang Ya Chen xiaoli liu Rundong Peng 《Forest Ecosystems》 SCIE CSCD 2024年第2期202-213,共12页
Background:As is widely known,an increasing number of forest areas were managed to preserve and enhance the health of forest ecosystems.However,previous research on forest management has often overlooked the importanc... Background:As is widely known,an increasing number of forest areas were managed to preserve and enhance the health of forest ecosystems.However,previous research on forest management has often overlooked the importance of structure-based.Aims:Our objectives were to define the direction of structure-based forest management.Subsequently,we investigated the relationships between forest structure and the regeneration,growth,and mortality of trees under different thinning treatments.Ultimately,the drivers of forest structural change were explored.Methods:On the basis of 92 sites selected from northeastern China,with different recovery time (from 1 to 15years) and different thinning intensities (0–59.9%) since the last thinning.Principal component analysis (PCA)identified relationships among factors determining forest spatial structure.The structural equation model (SEM)was used to analyze the driving factors behind the changes in forest spatial structure after thinning.Results:Light thinning (0–20%trees removed) promoted forest regeneration,and heavy thinning (over 35% of trees removed) facilitated forest growth.However,only moderate thinning (20%–35%trees removed) created a reasonable spatial structure.While dead trees were clustered,and they were hardly affected by thinning intensity.Additionally,thinning intensity,recovery time,and altitude indirectly improve the spatial structure of the forest by influencing diameter at breast height (DBH) and canopy area.Conclusion:Creating larger DBH and canopy area through thinning will promote the formation of complex forest structures,which cultivates healthy and stable forests. 展开更多
关键词 THINNING Natural secondary forest Spatial structure Dynamic changes Growth factors Structural equation modeling
下载PDF
Scale-space effect and scale hybridization in image intelligent recognition of geological discontinuities on rock slopes
2
作者 Mingyang Wang Enzhi Wang +1 位作者 xiaoli liu Congcong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1315-1336,共22页
Geological discontinuity(GD)plays a pivotal role in determining the catastrophic mechanical failure of jointed rock masses.Accurate and efficient acquisition of GD networks is essential for characterizing and understa... Geological discontinuity(GD)plays a pivotal role in determining the catastrophic mechanical failure of jointed rock masses.Accurate and efficient acquisition of GD networks is essential for characterizing and understanding the progressive damage mechanisms of slopes based on monitoring image data.Inspired by recent advances in computer vision,deep learning(DL)models have been widely utilized for image-based fracture identification.The multi-scale characteristics,image resolution and annotation quality of images will cause a scale-space effect(SSE)that makes features indistinguishable from noise,directly affecting the accuracy.However,this effect has not received adequate attention.Herein,we try to address this gap by collecting slope images at various proportional scales and constructing multi-scale datasets using image processing techniques.Next,we quantify the intensity of feature signals using metrics such as peak signal-to-noise ratio(PSNR)and structural similarity(SSIM).Combining these metrics with the scale-space theory,we investigate the influence of the SSE on the differentiation of multi-scale features and the accuracy of recognition.It is found that augmenting the image's detail capacity does not always yield benefits for vision-based recognition models.In light of these observations,we propose a scale hybridization approach based on the diffusion mechanism of scale-space representation.The results show that scale hybridization strengthens the tolerance of multi-scale feature recognition under complex environmental noise interference and significantly enhances the recognition accuracy of GD.It also facilitates the objective understanding,description and analysis of the rock behavior and stability of slopes from the perspective of image data. 展开更多
关键词 Image processing Geological discontinuities Deep learning MULTI-SCALE Scale-space theory Scale hybridization
下载PDF
A review of rock macro-indentation:Theories,experiments,simulations,and applications
3
作者 Weiqiang Xie xiaoli liu +2 位作者 Xiaoping Zhang Xinmei Yang Xiaoxiong Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2351-2374,共24页
Rock macro-indentation plays a fundamental role in mechanical rock breaking for various rock engineering application,such as drilling,tunneling,cutting,and sawing.Over the past decades,extensive research has been cond... Rock macro-indentation plays a fundamental role in mechanical rock breaking for various rock engineering application,such as drilling,tunneling,cutting,and sawing.Over the past decades,extensive research has been conducted to understand the indentation mechanisms and responses through various approaches.This review aims to provide an overview of the current status and recent advancements in theories,experiments,numerical simulations,and applications of macro-indentation in rock engineering.It starts with elaborating on the mechanisms of macro-indentation,followed by a discussion of the merits and limitations of commonly used models.Influence factors and their effects on indentation test results are then summarized.Various numerical simulation methods for rock macro-indentation are highlighted,along with their advantages and disadvantages.Subsequently,the applications of indentation tests and indentation indices in characterizing rock properties are explored.It reveals that compression-tension,compression-shear,and composite models are widely employed in rock macroindentation.While the compression-tension model is straightforward to use,it may overlook the anisotropic properties of rocks.On the other hand,the composite model provides a more comprehensive description of rock indentation but requires complex calculations.Additionally,factors,such as indentation rate,indenter geometry,rock type,specimen size,and confining pressure,can significantly influence the indentation results.Simulation methods for macro-indentation encompass continuous medium,discontinuous medium,and continuous-discontinuous medium methods,with selection based on their differences in principle.Furthermore,rock macro-indentation can be practically applied to mining engineering,tunneling engineering,and petroleum drilling engineering.Indentation indices serve as valuable tools for characterizing rock strength,brittleness,and drillability.This review sheds light on the development of rock macro-indentation and its extensive application in engineering practice.Specialists in the field can gain a comprehensive understanding of the indentation process and its potential in various rock engineering endeavors. 展开更多
关键词 Rock macro-indentation Indentation test Indentation indices MECHANISM Rock breaking
下载PDF
Asymmetric configuration activating lattice oxygen via weakening d-p orbital hybridization for efficient C/N separation in urea overall electrolysis
4
作者 Chongchong liu Peifang Wang +3 位作者 Bin Hu xiaoli liu Rong Huang Gang Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期233-239,共7页
Urea oxidation reaction(UOR)is proposed as an exemplary half-reaction in renewable energy applications because of its low thermodynamical potential.However,challenges persist due to sluggish reaction kinetics and comp... Urea oxidation reaction(UOR)is proposed as an exemplary half-reaction in renewable energy applications because of its low thermodynamical potential.However,challenges persist due to sluggish reaction kinetics and complex by-products separation.To this end,we introduce the lattice oxygen oxidation mechanism(LOM),propelling a novel UOR route using a modified CoFe layered double hydroxide(LDH)catalyst termed CFRO-7.Theoretical calculations and in-situ characterizations highlight the activated lattice oxygen(O_(L))within CFRO-7 as pivotal sites for UOR,optimizing the reaction pathway and accelerating the kinetics.For the urea overall electrolysis application,the LOM route only requires a low voltage of 1.54 V to offer a high current of 100 mA cm^(-2) for long-term utilization(>48 h).Importantly,the by-product NCO^(-)−is significantly suppressed,while the CO_(2)2/N_(2) separation is efficiently achieved.This work proposed a pioneering paradigm,invoking the LOM pathway in urea electrolysis to expedite reaction dynamics and enhance product selectivity. 展开更多
关键词 Lattice oxygen Urea oxidation reaction Overall electrolysis Products selectivity
下载PDF
The relationships between maize(Zea mays L.)lodging resistance and yield formation depend on dry matter allocation to ear and stem 被引量:1
5
作者 Ping Zhang Shuangcheng Gu +5 位作者 Yuanyuan Wang Chenchen Xu Yating Zhao xiaoli liu Pu Wang Shoubing Huang 《The Crop Journal》 SCIE CSCD 2023年第1期258-268,共11页
Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yi... Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yield by optimizing dry-matter allocation to different organs under different environments.A three-year field experiment was conducted using four maize cultivars with differing lodging resistances and five growing environments in 2018–2020.Lodging-susceptible(LS)cultivars on average yielded more than lodging-resistant(LR)cultivars when lodging was not present.The yield components kernel number per ear(KN)and thousand-kernel weight(TKW)were both negatively correlated with lodging resistance traits(stalk bending strength,rind penetration strength,and dry matter weight per internode length).Before silking,the LR cultivar Lishou 1(LS1)transported more assimilates to the basal stem,resulting in a thicker basal stem,which reduced dry matter allocation to the ear and in turn KN.The lower KN of LS1 was also due partly to the lower plant height(PH),which increased lodging resistance but limited plant dry matter production.In contrast,the LS cultivars Xianyu 335(XY335)and Xundan 20(XD20)produced and allocated more photoassimilates to ears,but limited dry matter allocation to stems.After silking,LS cultivars showed higher TKW than LR cultivars as a function of high photoassimilate productivity and high assimilate allocation to the ear.The higher lodging resistance of LS1 was due mainly to the greater assimilate allocation to stem after silking and lower PH and ear height(EH).High-yielding and high-LR traits of Fumin(FM985)were related to optimized EH and stem anatomical structure,higher leaf productivity,low assimilate demand for kernel formation,and assimilate partitioning to ear.A high presilking temperature accelerated stem extension but reduced stem dry matter accumulation and basal stem strength.Post-silking temperature influences lodging resistance and yield more than other environmental factors.These results will be useful in understanding the tradeoffs between KN,KW,and LR in maize and environmental influences on these tradeoffs. 展开更多
关键词 CORN LODGING Yield formation Physical traits Dry matter allocation
下载PDF
Study on the disaster caused by the linkage failure of the residual coal pillar and rock stratum during multiple coal seam mining:mechanism of progressive and dynamic failure
6
作者 Yunliang Tan Qing Ma +4 位作者 xiaoli liu Xuesheng liu Derek Elsworth Ruipengg Qian Junlong Shang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第3期122-135,共14页
Multi-seam mining often leads to the retention of a significant number of coal pillars for purposes such as protection,safety,or water isolation.However,stress concentration beneath these residual coal pillars can sig... Multi-seam mining often leads to the retention of a significant number of coal pillars for purposes such as protection,safety,or water isolation.However,stress concentration beneath these residual coal pillars can significantly impact their strength and stability when mining below them,potentially leading to hydraulic support failure,surface subsidence,and rock bursting.To address this issue,the linkage between the failure and instability of residual coal pillars and rock strata during multi-seam mining is examined in this study.Key controls include residual pillar spalling,safety factor(f.),local mine stiffness(LMS),and the post-peak stiffness(k)of the residual coal pillar.Limits separating the two forms of failure,progressive versus dynamic,are defined.Progressive failure results at lower stresses when the coal pillar transitions from indefinitely stable(f,>1.5)to failing(f,<1.5)when the coal pillar can no longer remain stable for an extended duration,whereas sud-den(unstable)failure results when the strength of the pillar is further degraded and fails.The transition in mode of failure is defined by the LMS/k ratio.Failure transitions from quiescent to dynamic as LMS/k.<1,which can cause chain pillar instability propagating throughout the mine.This study provides theoretical guidance to define this limit to instability of residual coal pillars for multi-seam mining in similar mines. 展开更多
关键词 Multi-seam mining Residual coal pillars Rock stratum Linkage instability mechanism Local mine stiffness
下载PDF
Classification of Hailstone Trajectories in a Hail Cloud over a Semi-Arid Region in China
7
作者 xiaoli liu Kerui MIN +1 位作者 Jianren SANG Simin MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第10期1877-1894,共18页
The growth trajectory of hailstones in clouds determines the ground intensity and spatial distribution of hailfall.A systematic study of hail trajectories can help improve the current scientific understanding of the m... The growth trajectory of hailstones in clouds determines the ground intensity and spatial distribution of hailfall.A systematic study of hail trajectories can help improve the current scientific understanding of the mechanisms by which hail forms in semi-arid regions of China and,in doing so,improve the quality of hail forecasts and warnings and help to prevent and mitigate disasters.In this study,the WRFv3.7.1 model was employed to provide the background field to drive the hailstone trajectory model.Cluster analysis was then used to classify hail trajectories to investigate the characteristics of different types of hail trajectories and the microphysical characteristics of hail formation.The differences in hail trajectories might be mainly due to differences in the background flow fields and microphysical fields of hail clouds in different regions.Comparative analysis revealed that as the maximum particle size of ground hailfall increased,the maximum supercooled cloud water content and the maximum updraft velocity for the formation and growth of hailstone increased.The larger the size when the hailstone reaches its maximum height,the larger the ground hailstone formed.Overall,the formation and growth of hailstone are caused by the joint action of the dynamical flow field and cloud microphysical processes.The physical processes of hailstone growth and main growth regions differ for different types of hail trajectories.Therefore,different catalytic schemes should be adopted in artificial hail prevention operations for different hail clouds and trajectories due to differences in hail formation processes and ground hailfall characteristics. 展开更多
关键词 hail trajectory trajectory classification hail particle size numerical simulation
下载PDF
Molecular Dynamics Simulation of Interface Properties between Water-Based Inorganic Zinc Silicate Coating Modified by Organosilicone and Iron Substrate
8
作者 Hengjiao Gao Yuqing Xiong +5 位作者 Kaifeng Zhang Shengzhu Cao Mingtai Hu Yi Li Ping Zhang xiaoli liu 《Journal of Renewable Materials》 SCIE EI 2023年第4期1715-1729,共15页
The interface properties of Fe(101)/zinc silicate modified by organo-siloxane(KH-570)was studied by using the method of molecular dynamics simulation.By calculating the temperature and energy fluctuation of equilibriu... The interface properties of Fe(101)/zinc silicate modified by organo-siloxane(KH-570)was studied by using the method of molecular dynamics simulation.By calculating the temperature and energy fluctuation of equilibrium state,equilibrium concentration distribution,MSD of layer and different groups,and interaction energy of two interface models,the influencing mechanism on the interface properties of adding organosiloxane into coating system was studied at the atomic scale.It shows that the temperature and energy of interface oscillated in a small range and it was exited in a state of dynamic equilibrium within the initial simulation stage(t<20 ps).It can be seen from the multiple peak states of concentration distribution that the iron substrate,organo-siloxane and zinc silicate are distributed in the form of a concentration gradient in the real environment.The rapid diffusion of free zinc powder in zinc silicate coating was the essential reason that affected the comprehensive properties of coating.The interface thickness decreased from 7.45 to 6.82Å,the MSD of free zinc powder was effectively reduced,and the interfacial energy was increased from 104.667 to 347.158 kcal/mol after being modified by organo-siloxane. 展开更多
关键词 Interface model molecular dynamics simulation concentration distribution MSD interaction energy
下载PDF
Research on in situ stress inversion of deep-buried tunnel based on pressure/tension axis mechanism and geological structure
9
作者 Guanfu Chen xiaoli liu Danqing Song 《Deep Underground Science and Engineering》 2023年第1期61-73,共13页
The investigation of the in situ stress distribution has always been a key condition for engineering design of deep tunnels and analysis of surrounding rock stability.In this paper,a comprehensive judgment method coup... The investigation of the in situ stress distribution has always been a key condition for engineering design of deep tunnels and analysis of surrounding rock stability.In this paper,a comprehensive judgment method coupled with pressure/tension(P/T)axis mechanism and geological structure is proposed to invert the in situ stress in the Duoxiongla tunnel in Tibet.In the process of TBM tunnel excavation,3887 groups of microseismic events were collected by means of microseismic monitoring technology.By studying the temporal and spatial distribution of 3887 groups of microseismic events,42 groups of microseismic data were selected for in situ stress inversion.Then the focal mechanisms of 42 groups of microseisms were inverted.Combined with the analysis of the previous geological survey,the inversion results of the in situ stress were analyzed.According to the focal mechanism of the tunnel area,the linear in situ stress inversion method was used to invert the in situ stress in the source area.Finally,according to the PTGS(pressure/tension axis mechanism and geological structure)comprehensive judgment method proposed in this paper,the in situ stress of the tunnel microseismic region was determined.The results show that there are mainly three groups of fissures and joint surfaces in the tunnel area,and the in situ stress is dominated by the horizontrun tectonic stress;the main driving force of the rupture surface in the excavation process of Duoxiongla tunnel is the horizontal tectonic stress;the distribution of the maximum and minimum principal stress obtained by the inversion is consistent with the distribution of the P/T axis;combined with the linear in situ stress inversion method and the comprehensive judgment of PTGS,the azimuth and dip angles of the three principal stresses are finally determined as N90.71°E,4.06°,N5.35°W,3.06°,and N8.10W,85.32°,respectively.The study verifies the feasibility of microseismic inversion of in situ stress. 展开更多
关键词 deep tunnel focal mechanism geological structure microseismic monitoring stress inversion
下载PDF
Bi_(12)O_(17)Br_2和Bi_4O_5Br_2纳米片的简易制备及光催化氧化NO机理的原位漫反射红外光谱研究(英文) 被引量:5
10
作者 张文东 刘晓莉 +2 位作者 董兴安 董帆 张育新 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第12期2030-2038,共9页
BiOBr因具有合适的能带结构和独特的层状纳米结构而广泛应用于可见光催化领域,但其低的可见光利用率和高的光生电子-空穴对复合率,限制了其实际应用.最近,非整比BiOBr纳米材料表现出了良好的可见光催化性能.本课题组分别采用简易水热法... BiOBr因具有合适的能带结构和独特的层状纳米结构而广泛应用于可见光催化领域,但其低的可见光利用率和高的光生电子-空穴对复合率,限制了其实际应用.最近,非整比BiOBr纳米材料表现出了良好的可见光催化性能.本课题组分别采用简易水热法和常温法制备得Bi_(12)O_(17)Br_2和Bi_4O_5Br_2纳米片,并表现出良好的可见光催化性能.然而,对于Bi_(12)O_(17)Br_2和Bi_4O_5Br_2的可见光催化氧化NO的转化路径及反应机理还不清楚.基于此,本文采用射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)、电子自旋共振(ESR)、电子顺磁共振(EPR)和比表面积-孔结构(BET-BJH)等手段研究了Bi_(12)O_(17)Br_2和Bi_4O_5Br_2的理化性能,通过原位红外光谱(in situ DRIFTS)研究了Bi_(12)O_(17)Br_2和Bi_4O_5Br_2的可见光催化氧化NO的转化路径及反应机理.XRD结果表明,在常温碱性环境下,OH^-离子逐步取代BiOBr中的Br-离子制备得单斜晶相Bi_4O_5Br_2;在水热碱性环境下,OH-离子进一步取代Bi_4O_5Br_2中的Br-离子制备得四方晶相Bi_(12)O_(17)Br_2.SEM和TEM结果表明,Bi_(12)O_(17)Br_2是由不规则纳米片堆叠形成的紧密且厚实的层状结构,Bi_4O_5Br_2是由纳米片和纳米颗粒无序堆积形成的多孔疏松结构.BET-BJH测试结果显示,Bi_4O_5Br_2的比表面积和孔容(37.2 m^2/g,0.215 cm^3/g)显著高于Bi_(12)O_(17)Br_2(8.7 m^2/g,0.04 cm^3/g).UV-Vis DRS测试结果显示,Bi_(12)O_(17)Br_2和Bi_4O_5Br_2均显示了良好的可见光吸收能力.可见光催化去除NO的测试结果表明,Bi_4O_5Br_2(41.8%)的光催化活性明显高于Bi_(12)O_(17)Br_2(28.3%).并且,在5次可见光催化循环实验后,Bi_4O_5Br_2(41.1%)表现出良好可见光催化稳定性.ESR测试结果表明,Bi_(12)O_(17)Br_2和Bi_4O_5Br_2参与反应的主要活性物种均为·OH自由基,Bi_4O_5Br_2产生·OH自由基明显强于Bi_(12)O_(17)Br_2.EPR测试结果表明,Bi_4O_5Br_2的氧空位明显多于Bi_(12)O_(17)Br_2,丰富的氧空位更有利于NO的有效吸附.由此可见,Bi_(12)O_(17)Br_2和Bi_4O_5Br_2表现出不同的理化特性.可见光催化氧化NO的原位红外光谱表明,只在Bi_(12)O_(17)Br_2光催化氧化NO的转化路径中会生成中间产物N2O3,表明Bi_(12)O_(17)Br_2和Bi_4O_5Br_2具有不同的NO光催化转化路径.结合上述表征结果认为,Bi_4O_5Br_2比Bi_(12)O_(17)Br_2表现出更优异可见光催化性能的主要原因有以下四个方面为:(1)Bi_4O_5Br_2拥有更高的比表面积和更大的孔容,有利于NO的吸附、反应中间产物的转移和提供更多的活性位点参与光催化反应;(2)Bi_4O_5Br_2可以生成更多的·OH自由基和拥有更强的价带空穴氧化能力;(3)NO中的O原子可以与Bi_4O_5Br_2的氧空位结合,从而提供更多的反应位点;(4)Bi_4O_5Br_2的光催化反应中可以生成中间产物N_2O_3,可以降低NO转化成NO_3^-的反应活化能. 展开更多
关键词 Bi12O17Br2 Bi4O5Br2 原位漫反射红外光谱研究 转化路径 NO氧化
下载PDF
中强线性啁啾脉冲激发的共振调制频域双光子吸收过程研究
11
作者 任立庆 王兆华 +5 位作者 邓仲勋 李小龙 刘孝丽 李凡 郭林伟 李增生 《应用物理》 2018年第8期362-367,共6页
本文基于二阶微扰理论研究频域中强线性啁啾飞秒脉冲作用下双光子过程。详细分析了频域中啁啾因子、中心波长等参数对双光子跃迁的影响。阐明了弱场产生的双光子跃迁在频域的动态演化过程。进一步利用拓展的四阶微扰理论研究了中强场条... 本文基于二阶微扰理论研究频域中强线性啁啾飞秒脉冲作用下双光子过程。详细分析了频域中啁啾因子、中心波长等参数对双光子跃迁的影响。阐明了弱场产生的双光子跃迁在频域的动态演化过程。进一步利用拓展的四阶微扰理论研究了中强场条件下双光子吸收过程的物理机理。相比复杂而昂贵的脉冲整形而言,本文提出的研究方案具有简单、经济且易操作的优势。 展开更多
关键词 原子系统 干涉 啁啾脉冲 ATOMIC System Interference CHIRPED Pulse
下载PDF
常见肝癌预后预测模型的分析与比较 被引量:3
12
作者 周冬冬 刘晓利 +3 位作者 姜婷婷 于浩 江宇泳(综述) 杨志云(审校) 《中国肿瘤临床》 CAS CSCD 北大核心 2020年第24期1281-1286,共6页
肝细胞癌(hepatocellular carcinoma,HCC)占我国癌症死亡原因的第三位,同时也是世界上主要的健康问题之一。尽管HCC的早期诊断及治疗已经取得了明显的进展,但是在大多数国家的死亡率仍非常高。HCC患者的预后除了依赖于肿瘤特征,更依赖... 肝细胞癌(hepatocellular carcinoma,HCC)占我国癌症死亡原因的第三位,同时也是世界上主要的健康问题之一。尽管HCC的早期诊断及治疗已经取得了明显的进展,但是在大多数国家的死亡率仍非常高。HCC患者的预后除了依赖于肿瘤特征,更依赖于病因、肝脏功能及个体差异。尽管世界各地提出了多个肝癌的预后预测模型,但是各个模型在肝癌预后判断方面的价值尚无统一定论。因此,对比及分析这些预后模型对肝癌预后判断及治疗指导的价值至关重要。本综述的目的是分析比较当前较为常见的8种预后预测模型(Okuda、TNM8、BCLC、JIS、CUPI、CLIP、GRETCH、CIS)的优缺点,为今后的临床及科学研究提供新思路。 展开更多
关键词 原发性肝癌 预后 模型
下载PDF
超顺磁氧化铁纳米颗粒的可控制备及其磁感应热性能分析——介绍一个大学化学综合实验 被引量:1
13
作者 张廷斌 卢俊杰 +4 位作者 邱滢 张欢 刘晓丽 彭明丽 樊海明 《大学化学》 CAS 2022年第12期226-235,共10页
超顺磁氧化铁纳米颗粒因其独特的磁学性质和优异的生物相容性,在生物医学领域具有广泛应用。其中,超顺磁氧化铁在交变磁场作用下的磁感应热特性,已被用于临床肿瘤治疗,是当前纳米医学和转化医学研究的前沿热点。本文介绍了利用高温热分... 超顺磁氧化铁纳米颗粒因其独特的磁学性质和优异的生物相容性,在生物医学领域具有广泛应用。其中,超顺磁氧化铁在交变磁场作用下的磁感应热特性,已被用于临床肿瘤治疗,是当前纳米医学和转化医学研究的前沿热点。本文介绍了利用高温热分解法制备不同尺寸的超顺磁氧化铁纳米颗粒,并分别从纳米颗粒尺寸及磁场强度两个方面探究其对超顺磁氧化铁磁感应热性能的影响,使学生初步了解磁性氧化铁纳米颗粒尺寸可控的制备方法以及磁感应热效应的基本原理、测试和分析方法。本综合实验取材于备受关注且已在疾病治疗领域显示出巨大应用潜力的前沿研究成果,有助于拓展学生的科学视野,启发科研兴趣,培养科学创新意识。 展开更多
关键词 超顺磁氧化铁纳米颗粒 磁感应热效应 比吸收率 交变磁场 综合化学实验
下载PDF
Multiscale hierarchical analysis of rock mass and prediction of its mechanical and hydraulic properties 被引量:8
14
作者 xiaoli liu Guofeng Han +2 位作者 Enzhi Wang Sijing Wang Kumar Nawnit 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期694-702,共9页
Engineering geological and hydro-geological characteristics of foundation rock and surrounding rock mass are the main factors that affect the stability of underground engineering. This paper presents the concept of mu... Engineering geological and hydro-geological characteristics of foundation rock and surrounding rock mass are the main factors that affect the stability of underground engineering. This paper presents the concept of multiscale hierarchical digital rock mass models to describe the rock mass, including its structures in different scales and corresponding scale dependence. Four scales including regional scale,engineering scale, laboratory scale and microscale are determined, and the corresponding scaledependent geological structures and their characterization methods are provided. Image analysis and processing method, geostatistics and Monte Carlo simulation technique are used to establish the multiscale hierarchical digital rock mass models, in which the main micro-and macro-structures of rock mass in different geological units and scales are reflected and connected. A computer code is developed for numerically analyzing the strength, fracture behavior and hydraulic conductivity of rock mass using the multiscale hierarchical digital models. Using the models and methods provided in this paper, the geological information of rock mass in different geological units and scales can be considered sufficiently,and the influence of downscale characteristics(such as meso-scale) on the upscale characteristics(such as engineering scale) can be calculated by considering the discrete geological structures in the downscale model as equivalent continuous media in the upscale model. Thus the mechanical and hydraulic properties of rock mass may be evaluated rationally and precisely. The multiscale hierarchical digital rock mass models and the corresponding methods proposed in this paper provide a unified and simple solution for determining the mechanical and hydraulic properties of rock mass in different scales. 展开更多
关键词 Multiscale hierarchical digital rock mass MODELS Numerical analysis Evaluation of rock mass quality
下载PDF
Fosmid library construction and screening for the maize mutant gene Vestigial glume 1 被引量:4
15
作者 Chaoxian liu xiaoli liu +2 位作者 Lei Lei Haiying Guan Yilin Cai 《The Crop Journal》 SCIE CAS CSCD 2016年第1期55-60,共6页
The maize mutant gene Vestigial glume 1(Vg1) has been fine-mapped to a narrow region by map-based cloning and the candidate gene for Vg1 spanned 19.5 kb. Here we report Vg1 genomic fosmid library construction and scre... The maize mutant gene Vestigial glume 1(Vg1) has been fine-mapped to a narrow region by map-based cloning and the candidate gene for Vg1 spanned 19.5 kb. Here we report Vg1 genomic fosmid library construction and screening. The fosmid library of Vg1 consisted of574,000 clones with an average insert size of 36.4 kb, representing 7.9-fold coverage of the maize genome. Fosmid stability assays indicated that clones were stable during propagation in the fosmid system. Using Vg1 candidate gene-specific primers, a positive clone was successfully identified. This discovery will pave the way for identifying the function of Vg1 in maize development. 展开更多
关键词 VESTIGIAL GLUME 1 FOSMID LIBRARY CONSTRUCTION LIBRARY SCREENING
下载PDF
Laboratory-scale investigation of response characteristics of liquid-filled rock joints with different joint inclinations under dynamic loading 被引量:4
16
作者 Jin Huang xiaoli liu +3 位作者 Danqing Song Jian Zhao Enzhi Wang Jianmin Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期396-406,共11页
In underground rock engineering,water-bearing faults may be subjected to dynamic loading,resulting in the coupling of hydraulic and dynamic hazards.Understanding the interaction mechanism between the stress waves indu... In underground rock engineering,water-bearing faults may be subjected to dynamic loading,resulting in the coupling of hydraulic and dynamic hazards.Understanding the interaction mechanism between the stress waves induced by dynamic loadings and liquid-filled rock joints is therefore crucial.In this study,an auxiliary device for simulating the liquid-filled layer was developed to analyze the dynamic response characteristics of liquid-filled rock joints in laboratory.Granite and polymethyl methacrylate(PMMA)specimens were chosen for testing,and high-amplitude shock waves induced by a split Hopkinson pressure bar(SHPB)were used to produce dynamic loadings.Impact loading tests were conducted on liquid-filled rock joints with different joint inclinations.The energy propagation coefficient and peak liquid pressure were proposed to investigate the energy propagation and attenuation of waves propagating across the joints,as well as the dynamic response characteristics of the liquid in the liquid-filled rock joints.For the inclination angle range considered herein,the experimental results showed that the energy propagation coefficient gently diminished with increasing joint inclination,and smaller coefficient values were obtained for granite specimens compared with PMMA specimens.The peak liquid pressure exhibited a gradually decreasing trend with increasing joint inclination,and the peak pressure for granite specimens was slightly higher than that for PMMA specimens.Overall,this paper may provide a considerably better method for studying liquid-filled rock joints at the laboratory scale,and serves as a guide for interpreting the underlying mechanisms for interactions between stress waves and liquid-filled rock joints. 展开更多
关键词 Liquid-filled rock joint Stress wave Laboratory investigation Wave propagation characteristics Liquid dynamic response
下载PDF
Characterization of the imprinting and expression patterns of ZAG2 in maize endosperm and embryo 被引量:3
17
作者 Chaoxian liu Jiuguang Wang +6 位作者 Xiupeng Mei Xiaojing Deng Tingting Yu xiaoli liu Guoqiang Wang Zhizhai liu Yilin Cai 《The Crop Journal》 SCIE CAS CSCD 2015年第1期74-79,共6页
ZAG2 has been identified as a maternally expressed imprinted gene in maize endosperm.Our study revealed that paternally inherited ZAG2 alleles were imprinted in maize endosperm and embryo at 14 days after pollination(... ZAG2 has been identified as a maternally expressed imprinted gene in maize endosperm.Our study revealed that paternally inherited ZAG2 alleles were imprinted in maize endosperm and embryo at 14 days after pollination(DAP), and consistently imprinted in endosperm at 10, 12, 16, 18, 20, 22, 24, 26, and 28 DAP in reciprocal crosses between B73 and Mo17. ZAG2 alleles were also imprinted in reciprocal crosses between Zheng 58 and Chang7-2 and between Huang C and 178. ZAG2 alleles exhibited differential imprinting in hybrids of 178 × Huang C and B73 × Mo17, while in other hybrids ZAG2 alleles exhibited binary imprinting. The tissue-specific expression pattern of ZAG2 showed that ZAG2 was expressed at a high level in immature ears, suggesting that ZAG2 plays important roles in not only kernel but ear development. 展开更多
关键词 GENE IMPRINTING ZAG2 EXPRESSION PATTERN ENDOSPERM EMBRYO
下载PDF
Determination of structure-activity relationships between fentanyl analogs and human μ-opioid receptors based on active binding site models 被引量:3
18
作者 Ming liu xiaoli liu +2 位作者 Ping Wan Qiangsan Wu Wenxiang Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第4期267-276,共10页
Fentanyl is a potent and widely used clinical narcotic analgesic, as well as a highly selective IJ-opioid agonist. The present study established a homologous model of the human μ-opioid receptor; an intercomparison o... Fentanyl is a potent and widely used clinical narcotic analgesic, as well as a highly selective IJ-opioid agonist. The present study established a homologous model of the human μ-opioid receptor; an intercomparison of three types of μ-opioid receptor protein sequence homologous rates was made. The secondary receptor structure was predicted, the model reliability was assessed and verified using the Ramachandran plot and ProTab analysis. The predictive ability of the CoMFA model was further validated using an external test set. Using the Surflex-Dock program, a series of fentanyl analog molecules were docked to the receptor, the calculation results from Biopolymer/SitelD showed that the receptor had a deep binding area situated in the extracellular side of the transmembrane domains (TM) among TM3, TM5, TM6, and TMT. Results suggested that there might be 5 active areas in the receptor. The important residues were Asp147, Tyr148, and Tyr149 in TM3, Trp293, and His297 in TM6, and Trp318, His319, Ile322, and Tyr326 in TM7, which were located at the 5 active areas. The best fentanyl docking orientation position was the piperidine ring, which was nearly perpendicular to the membrane surface in the 7 TM domains. Molecular dynamic simulations were applied to evaluate potential relationships between ligand conformation and fentanyl substitution. 展开更多
关键词 μ-opioid receptor fentanyl analogs AGONIST active site structure-activity relationship
下载PDF
Camptothecin-based nanodrug delivery systems 被引量:3
19
作者 Yan Wen Yingze Wang +4 位作者 xiaoli liu Wei Zhang Xinhe Xiong Zhongxiao Han Xingjie Liang 《Cancer Biology & Medicine》 SCIE CAS CSCD 2017年第4期363-370,共8页
The drug camptothecin has a wide range of antitumor effects in cancers including gastric cancer,rectal and colon cancer,liver cancer,and lung cancer.Camptothecin-based drugs inhibit topoisomerase 1(Topo 1),leading to ... The drug camptothecin has a wide range of antitumor effects in cancers including gastric cancer,rectal and colon cancer,liver cancer,and lung cancer.Camptothecin-based drugs inhibit topoisomerase 1(Topo 1),leading to destruction of DNA,and are currently being used as important chemotherapeutic agents in clinical antitumor treatment.However,the main obstacle associated with cancer therapy is represented by systemic toxicity of conventional anticancer drugs and their low accumulation at the tumor site.In addition,low bioavailability,poor water solubility,and other shortcomings hinder their anticancer activity.Different from traditional pharmaceutical preparations,nanotechnology-dependent nanopharmaceutical preparations have become one of the main strategies for different countries worldwide to overcome drug development problems.In this review,we summarized the current hotspots and discussed a variety of camptothecin-based nanodrugs for cancer therapy.We hope that through this review,more efficient drug delivery systems could be designed with potential applications in clinical cancer therapy. 展开更多
关键词 CAMPTOTHECINS NANOMEDICINE cancer therapy drug delivery system
下载PDF
High-resolution structure-from-motion models covering 160 km-long surface ruptures of the 2021 M_(W)7.4 Madoi earthquake in northern Qinghai-Tibetan Plateau 被引量:5
20
作者 Jing liu-Zeng Wenqian Yao +9 位作者 xiaoli liu Yanxiu Shao Wenxin Wang Longfei Han Yan Wang Xianyang Zeng Jinyang Li Zijun Wang Zhijun liu Hongwei Tu 《Earthquake Research Advances》 CSCD 2022年第2期38-48,共11页
The May 222021 M_(W)7.4 Madoi,Qinghai,China earthquake presented a rare opportunity to apply the modern unmanned aerial vehicle(UAV)photography method in extreme altitude and weather conditions to image surface ruptur... The May 222021 M_(W)7.4 Madoi,Qinghai,China earthquake presented a rare opportunity to apply the modern unmanned aerial vehicle(UAV)photography method in extreme altitude and weather conditions to image surface ruptures and near-field effects of earthquake-related surface deformations in the remote Tibet.High-resolution aerial photographs were acquired in the days immediately following the mainshock.The complex surface rupture patterns associated with this event were covered comprehensively at 3-6 cm resolution.This effort represents the first time that an earthquake rupture in the interior of the Qinghai-Tibetan Plateau has been fully and systematically captured by such high-resolution imagery,with an unprecedented level of detail,over its entire length.The dataset has proven valuable in documenting subtle and transient rupture features,such as the significant mole-tracks and opening fissures,which were ubiquitous coseismically but degraded during the subsequent summer storm season.Such high-quality imagery also helps to document with high fidelity the fractures of the surface rupture zone(supplements of this paper),the pattern related to how the faults ruptured to the ground surface,and the distribution of off-fault damage.In combination with other ground-based mapping efforts,the data will be analyzed in the following months to better understand the mechanics of earthquake rupture related to the fault zone rheology,rupture dynamics,and frictional properties along with the fault interface. 展开更多
关键词 UAV photography Earthquake surface rupture STRUCTURE-FROM-MOTION 2021 M_(W)7.4 Madoi earthquake
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部