Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of re...Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of renewable energy-related applications.Herein,Co-Ru based compounds supported on nitrogen doped two-dimensional(2D)carbon nanosheets(NCN)are developed via one step pyrolysis procedure(Co-Ru/NCN)for HER/ORR and following low-temperature oxidation process(Co-Ru@RuO_(x)/NCN)for OER.The specific 2D morphology guarantees abundant active sites exposure.Furthermore,the synergistic effects arising from the interaction between Co and Ru are crucial in enhancing the catalytic performance.Thus,the resulting Co-Ru/NCN shows remarkable electrocatalytic performance for HER(70 mV at 10 mA cm^(-2))in 1 M KOH and ORR(half-wave potential E_(1/2)=0.81 V)in 0.1 M KOH.Especially,the Co-Ru@RuO_(x)/NCN obtained by oxidation exhibits splendid OER performance in both acid(230 mV at 10 mA cm^(-2))and alkaline media(270 mV at 10 mA cm^(-2))coupled with excellent stability.Consequently,the fabricated two-electrode water-splitting device exhibits excellent performance in both acidic and alkaline environments.This research provides a promising avenue for the advancement of multifunctional nanomaterials.展开更多
The computation of stable or unstable manifold of two-dimensional is developed, which is an efficient method in studying stable structure analysis of system character geometrically. The Lorentz stable manifold is comp...The computation of stable or unstable manifold of two-dimensional is developed, which is an efficient method in studying stable structure analysis of system character geometrically. The Lorentz stable manifold is computed by the fixed arclength method and the hyperbolic equilibrium is a saddle. The two-dimensional stable structure of Lorentz manifold is significant in people’s usual view. We also introduce the V-function to compute the V-manifold correspondingly. The defined V-function is smooth in the unstable direction of the manifold. Especially, the routh to period-doubling attractor on manifold surface is discussed too.展开更多
Ce-A12O3 catalysts prepared by co-precipitation are investigated both in NO oxidation by 02 and in selective catalytic reduction of NO by C2H2 (C2H2-SCR). It is found that C2H2-SCR is initiated and controlled by NO ...Ce-A12O3 catalysts prepared by co-precipitation are investigated both in NO oxidation by 02 and in selective catalytic reduction of NO by C2H2 (C2H2-SCR). It is found that C2H2-SCR is initiated and controlled by NO oxidation to NO2 over A12O3. Ce loading on A12O3 is almost inactive for NO oxidation below 350℃, since NO2 strongly adsorbs on cerium oxide, leading to the active sites being blocked, which was characterized by temperature-programmed desorption of NO and NO2 and Fourier transform infrared spectroscopy after NO+O2 coadsorption over the samples. However, in the case of C2H2-SCR, Ce loading on A1203 significantly improves the reaction by accelerating the NO oxidation step in the temperature range of 250-450℃, since the nitrate species produced by NO2 adsorption is an active intermediate required by C2H2-SCR.展开更多
Dew is an important supplement water source in arid and semi-arid areas. In order to determine the dew formation on different kinds of soils associated with various shrub species and microhabitats, we performed measur...Dew is an important supplement water source in arid and semi-arid areas. In order to determine the dew formation on different kinds of soils associated with various shrub species and microhabitats, we performed measurement of accumulated dew formation amount and duration in October 2009 in a revegetation-stabilized arid desert ecosystem in Shapotou area, northern China. The results indicated that the accumulated dew formation amount was four times larger at open spaces as compared to under the canopy, and it was nearly twice as much under living Artemisia ordosica plants(L.A.) as compared to under living Caragana korshinskii plants(L.C.). The opposite characteristics were found for dew duration between different microhabitats. Dew amounts at different vertical heights around the shrub stands were in the order of 50 cm above the canopy〉the canopy edge〉under the canopy. Dew amount continued to increase after dawn, and the proportion of average accumulated dew amount after dawn accounting for the average maximum amount increased from above the canopy to under the canopy. Dew formation duration after sunrise accounted for more than 50% of the total formation duration during the day time. Contrary to the distribution characteristics of dew amount, dew duration after dawn and total dew formation duration during the day time were both highest under the canopy, followed by at the canopy edge and then at 50 cm above the canopy. The portion of dew duration after dawn accounting for the total dew duration during the day time increased from above the canopy to under the canopy. From these results, we may conclude that dew availability as a supplemental water resource for improving the microhabitats in water-limited arid ecosystems is position dependent especially for the plant microhabitats at different stands layers.展开更多
The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the ...The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The technology scheme of the counter-rotating turbine system is proposed, then the experimental simulation of the lubricating oil loop, fuel loop, and seawater loop is completed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.展开更多
Synthesis of acetic acid by direct oxidation of ethylene on Pd-H4SiW12O40-based catalysts was studied in a fixed-bed integral reactor and a pulse differential reactor. From the performance of the catalysts with differ...Synthesis of acetic acid by direct oxidation of ethylene on Pd-H4SiW12O40-based catalysts was studied in a fixed-bed integral reactor and a pulse differential reactor. From the performance of the catalysts with different compositions and configurations, it is proposed that acetic acid is predominantly produced via an intermediate of acetaldehyde. This can be easily confirmed by comparing the product distributions in the integral and the differential reactors. The active sites for acetic acid formation are considered to exist mainly at the boundaries between the H4SiW12O40 and the Pd particles. The Pd-based catalysts reduced by H2/N2 have higher activities than those reduced by hydrazine, as explained by the degree of Pd dispersion obtained from the characteristics of hydrogen chemical adsorption. It was found that the Pd-Se-SiW12/SiO2 catalyst with selenium tetrachloride as a precursor was more active than that with potassium selenite, and that the acetic acid yield can be greatly increased by adding a suitable amount of dichloroethane (C2H4C12/C2H4 mole ratio=0.03) to the reactants.展开更多
Distribution of rainfall event sizes and interval lengths between events are important characteristics of arid and semi-arid climates. Understanding their importance will contribute to our ability to understand ecosys...Distribution of rainfall event sizes and interval lengths between events are important characteristics of arid and semi-arid climates. Understanding their importance will contribute to our ability to understand ecosystem dynamics in these regions. Rainfall event timing and magnitude are important drivers of ecosystem processes and are instrumental in creating land-scape heterogeneity in arid and semi-arid regions. Rainfall event characteristics were analyzed using an automatic tip-ping-bucket rain-gauge record across the entire summer monsoon season from 2008 to 2015 at the arid desert area of Shapotou in the Tengger Desert, China. Changing the minimum inter-event time (MIT) from 30 min to 24 h alters the number of rainfall events from 64 to 25 for the event depth larger than 0.1 mm. The mean rainfall intensity declined from 0.95 mm/h to 0.53 mm/h, and the geometric mean event duration rose from 0.55 h to 4.4 h. The number of rainfall events, mean rainfall intensity, and geometric mean event duration differed under different criteria of individual rainfall depths, except that for an individual rainfall depth of 0.5, 1.0, and 5.0 mm. The aforementioned features differed only at the lowest range of the mean rainfall intensity and depth for MIT=3 and 6 h. These findings suggest that identification of event-based rainfall in this specific arid region can be better achieved by setting the MIT at six hours. The wide variation in rainfall event properties indicate the need for paying more attention to the proper selection and reporting of event criteria in studies that adopt event-based data analysis. This is especially true in quantifying effective rainfall for soil water replenishment in terms of rainfall depth and intensity with infrequent rainfall events.展开更多
Iron deficiency chlorosis of Lilium davidii var. unicolor is often the case in practice in alkaline soils of northwest region of China. It is difficult to control iron chlorosis because of high cost and short effectiv...Iron deficiency chlorosis of Lilium davidii var. unicolor is often the case in practice in alkaline soils of northwest region of China. It is difficult to control iron chlorosis because of high cost and short effective work time of conventional iron fertilizers. In this study, a 2-year field experiment was conducted to evaluate the effects of two slow-release fertilizers on the suppression of iron deficiency chlorosis, soil chemical properties, and the yield and quality of L. davidii var. unicolor. Results show that both coated slow-release iron fertilizers and embedded slow-release iron fertilizer effectively controlled iron-deficiency chlorosis. The application of slow-release iron fertilizers significantly increased plant height and chlorophyll content of L. davidii var. unicolor at different growth stages. Furthermore, coated iron fertilizer application significantly increased starch, protein, soluble sugar and vitamin C content of L. davidii var. unicolor, and it also significantly improved total amino acid content, with increases in essential amino acids(Trp, Leu, Lys, Phe, Val, and Thr contents) and in nonessential amino acids(Asp, Glu, Cit, Ihs, Acc, Ala, Pro, and Cys contents). It was concluded that application of coated slow-release iron fertilizer could be a promising option for suppression of iron deficiency chlorosis and deserves further study.展开更多
As an innovation mode of organization, technology alliance has being increasingly paid more attention to by more and more small and medium-sized enterprises (SME). In this paper, on the basis of analyzing the theory...As an innovation mode of organization, technology alliance has being increasingly paid more attention to by more and more small and medium-sized enterprises (SME). In this paper, on the basis of analyzing the theory and practice meaning of the technology alliance, cooperative game method is used to analyze the forming process of the cooperative mechanism, and it points out that cooperation will make both sides get the largest benefits.展开更多
An increasing number of studies in recent years has elucidated distinguishable effects of stemflow on hydrology and biogeochemistry within a variety of ecosystems.Nonetheless,no known studies have investigated the tem...An increasing number of studies in recent years has elucidated distinguishable effects of stemflow on hydrology and biogeochemistry within a variety of ecosystems.Nonetheless,no known studies have investigated the temporal variability of stemflow volume within discrete rainfall events for xerophytic shrubs.Here,stemflow was monitored at 5-min intervals using a tipping-bucket rain gage during the 2015 growing season for a xerophytic shrub(Caragana korshinskii)within a water-limited arid desert ecosystem of northern China.We characterized the stemflow temporal variability,along with rainfall,and found the temporal heterogeneity of rainfall clearly affected the timing of stemflow inputs into basal soil within discrete rainfall events.The rainfall threshold value for stemflow generation is not a constant value but a range(0.6~2.1 mm,with an average of 1.1 mm)across rainfall events and is closely associated with the antecedent dry period.Time lags existed between the onset of rainfall and the onset of stemflow,and between rainfall peaks and stemflow peaks.Our findings are expected to be helpful for an improved process-based understanding of the temporal stemflow yield of xerophytic shrubs within water-limited arid desert ecosystems.展开更多
Soil temperatures at 0, 5, 10 and 20 cm depths were monitored cominuously at different microhabitats (beneath shrub canopy (BSC); bare intershrub spaces (BIS)) induced by xerophytic shrub (Caragana korshinskii ...Soil temperatures at 0, 5, 10 and 20 cm depths were monitored cominuously at different microhabitats (beneath shrub canopy (BSC); bare intershrub spaces (BIS)) induced by xerophytic shrub (Caragana korshinskii Kom.) canopy, respectively. We mainly aimed to assess the effects of shrub canopy and precipitation on the spatial-temporal variability of soil temperature. Results indi- cate that both precipitation and vegetation canopy significantly affect soil temperature. In clear days, soil temperatures within the BSC area were significantly lower than in the BIS at the same soil depth due to shading effects of shrub canopy. Diurnal variations of soil temperature show a unimoclal sinusoidal curve. The amplitude of soil temperature tended to decrease and a hysteresis of di- urnal maximum soil temperature existed at deeper soil layers. Vertical fluctuations of soil temperature displayed four typical curves. In the nighttime (approximately from sunset to sunrise), surface temperature within the BSC area was higher than in the BIS. In rainy days, however, soil temperatures were affected mainly by precipitation and the shrub canopy had a negligible effect on soil temperature, and little difference in soil temperature at the same soil depth was found between the BSC area and in the BIS. Diurnal variations in soil temperature decreased exclusively as rainfall continued and the vertical fluctuations of soil tempera~'e show an increased tendency with increasing soil depth.展开更多
Water is the most important limiting factor in arid areas,and thus water resource management is critical for the health of dryland ecosystems.However,global climate change and anthropogenic activity make water resourc...Water is the most important limiting factor in arid areas,and thus water resource management is critical for the health of dryland ecosystems.However,global climate change and anthropogenic activity make water resource management more difficult,and this situation may be particularly crucial for dryland restoration,because of variation in water uptake patterns associated with artificial revegetation of different ages and vegetation type.However,there is lacking longterm restorations that are suitable for studying this issue.In Shapotou area,Northwest China,artificial revegetation areas were planted several times beginning in 1956,and now form a chronosequence of sand-binding landscapes that are ideal for studying variability in water uptake source by plants over succession.The stable isotopesδ18O andδ2H were employed to investigate the water uptake patterns of the typical revegetation shrubs Artemisia ordosica and Caragana korshinskii,which were planted in different years.We compared the stable isotope ratios of shrub stem water to groundwater,precipitation,and soil water pools at five layers(5−10,10−40,40−80,80−150,and 150−300 cm).The results indicate that Artemisia ordosica derived the majority of their water from the 20−150 cm soil layer,whereas Caragana korshinskii obtained water from the 40−150 cm soil layer.The main water sources of Artemisia ordosica and C.korshinskii plants changed over time,from deeper about 150 cm depth to shallow 20 cm soil layer.This study can provide insights into water uptake patterns of major desert vegetation and thus water management of artificial ecosystems,at least in Northwest China.展开更多
The Department of Veterans Affairs (VA) manages the largest healthcare system under a single management structure in the United States. Providing access to high quality healthcare to the VA’s nearly 9 million enrolle...The Department of Veterans Affairs (VA) manages the largest healthcare system under a single management structure in the United States. Providing access to high quality healthcare to the VA’s nearly 9 million enrollees is a mission priority for the Veterans Health Administration (VHA), the arm of the VA that oversees all medical facilities and operations. Geographic Information Systems (GIS) tools enable analysts to construct data-driven recommendations to policy makers for providing the best and most timely healthcare to those individuals who have honorably served their country. This paper illustrates how GIS is being used by the VHA and provides the example of acute stroke care access for Veterans in one Veterans Integrated Service Network (VISN) within the VHA.展开更多
基金funding support from the National Natural Science Foundation of China(2200206852272222,and 52072197)+12 种基金the Taishan Scholar Young Talent Program(tsqn201909114)the Youth Innovation and Technology Foundation of Shandong Higher Education Institutions,China(2019KJC004)the Outstanding Youth Foundation of Shandong Province,China(ZR2019JQ14)the Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No.ZR2020ZD09Youth Innovation Team Development Program of Shandong Higher Education Institutions(2022KJ155)the Major Scientific and Technological Innovation Project(2019JZZY020405)the Shandong Province“Double-Hundred Talent Plan”(WST2020003)Project funded by the China Postdoctoral Science Foundation(2021M691700)the Natural Science Foundation of Shandong Province of China(ZR2019BB002ZR2018BB031)the Postdoctoral Innovation Project of Shandong Province(SDCXZG-202203021)the Scientific and Technological Innovation Promotion Project for Small-medium Enterprises of Shandong Province(2022TSGC1257)the Major Research Program of Jining City(2020ZDZP024)。
文摘Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of renewable energy-related applications.Herein,Co-Ru based compounds supported on nitrogen doped two-dimensional(2D)carbon nanosheets(NCN)are developed via one step pyrolysis procedure(Co-Ru/NCN)for HER/ORR and following low-temperature oxidation process(Co-Ru@RuO_(x)/NCN)for OER.The specific 2D morphology guarantees abundant active sites exposure.Furthermore,the synergistic effects arising from the interaction between Co and Ru are crucial in enhancing the catalytic performance.Thus,the resulting Co-Ru/NCN shows remarkable electrocatalytic performance for HER(70 mV at 10 mA cm^(-2))in 1 M KOH and ORR(half-wave potential E_(1/2)=0.81 V)in 0.1 M KOH.Especially,the Co-Ru@RuO_(x)/NCN obtained by oxidation exhibits splendid OER performance in both acid(230 mV at 10 mA cm^(-2))and alkaline media(270 mV at 10 mA cm^(-2))coupled with excellent stability.Consequently,the fabricated two-electrode water-splitting device exhibits excellent performance in both acidic and alkaline environments.This research provides a promising avenue for the advancement of multifunctional nanomaterials.
文摘The computation of stable or unstable manifold of two-dimensional is developed, which is an efficient method in studying stable structure analysis of system character geometrically. The Lorentz stable manifold is computed by the fixed arclength method and the hyperbolic equilibrium is a saddle. The two-dimensional stable structure of Lorentz manifold is significant in people’s usual view. We also introduce the V-function to compute the V-manifold correspondingly. The defined V-function is smooth in the unstable direction of the manifold. Especially, the routh to period-doubling attractor on manifold surface is discussed too.
基金supported by the National Natural Science Foundation of China (Grant No. 20833011 and 20877015)the State Hi-tech Research and Development Project of the Ministry of Science and Technology of China (Grant No. 2008AA06Z319)
文摘Ce-A12O3 catalysts prepared by co-precipitation are investigated both in NO oxidation by 02 and in selective catalytic reduction of NO by C2H2 (C2H2-SCR). It is found that C2H2-SCR is initiated and controlled by NO oxidation to NO2 over A12O3. Ce loading on A12O3 is almost inactive for NO oxidation below 350℃, since NO2 strongly adsorbs on cerium oxide, leading to the active sites being blocked, which was characterized by temperature-programmed desorption of NO and NO2 and Fourier transform infrared spectroscopy after NO+O2 coadsorption over the samples. However, in the case of C2H2-SCR, Ce loading on A1203 significantly improves the reaction by accelerating the NO oxidation step in the temperature range of 250-450℃, since the nitrate species produced by NO2 adsorption is an active intermediate required by C2H2-SCR.
基金financially supported by the National Natural Science Foundation of China (41201085)the 100 Talents Program of the Chinese Academy of Sciences
文摘Dew is an important supplement water source in arid and semi-arid areas. In order to determine the dew formation on different kinds of soils associated with various shrub species and microhabitats, we performed measurement of accumulated dew formation amount and duration in October 2009 in a revegetation-stabilized arid desert ecosystem in Shapotou area, northern China. The results indicated that the accumulated dew formation amount was four times larger at open spaces as compared to under the canopy, and it was nearly twice as much under living Artemisia ordosica plants(L.A.) as compared to under living Caragana korshinskii plants(L.C.). The opposite characteristics were found for dew duration between different microhabitats. Dew amounts at different vertical heights around the shrub stands were in the order of 50 cm above the canopy〉the canopy edge〉under the canopy. Dew amount continued to increase after dawn, and the proportion of average accumulated dew amount after dawn accounting for the average maximum amount increased from above the canopy to under the canopy. Dew formation duration after sunrise accounted for more than 50% of the total formation duration during the day time. Contrary to the distribution characteristics of dew amount, dew duration after dawn and total dew formation duration during the day time were both highest under the canopy, followed by at the canopy edge and then at 50 cm above the canopy. The portion of dew duration after dawn accounting for the total dew duration during the day time increased from above the canopy to under the canopy. From these results, we may conclude that dew availability as a supplemental water resource for improving the microhabitats in water-limited arid ecosystems is position dependent especially for the plant microhabitats at different stands layers.
文摘The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The technology scheme of the counter-rotating turbine system is proposed, then the experimental simulation of the lubricating oil loop, fuel loop, and seawater loop is completed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.
文摘Synthesis of acetic acid by direct oxidation of ethylene on Pd-H4SiW12O40-based catalysts was studied in a fixed-bed integral reactor and a pulse differential reactor. From the performance of the catalysts with different compositions and configurations, it is proposed that acetic acid is predominantly produced via an intermediate of acetaldehyde. This can be easily confirmed by comparing the product distributions in the integral and the differential reactors. The active sites for acetic acid formation are considered to exist mainly at the boundaries between the H4SiW12O40 and the Pd particles. The Pd-based catalysts reduced by H2/N2 have higher activities than those reduced by hydrazine, as explained by the degree of Pd dispersion obtained from the characteristics of hydrogen chemical adsorption. It was found that the Pd-Se-SiW12/SiO2 catalyst with selenium tetrachloride as a precursor was more active than that with potassium selenite, and that the acetic acid yield can be greatly increased by adding a suitable amount of dichloroethane (C2H4C12/C2H4 mole ratio=0.03) to the reactants.
基金funded by the National Natural Science Foundation of China (Grant Nos. 41530750, 41501108 and 41371101)
文摘Distribution of rainfall event sizes and interval lengths between events are important characteristics of arid and semi-arid climates. Understanding their importance will contribute to our ability to understand ecosystem dynamics in these regions. Rainfall event timing and magnitude are important drivers of ecosystem processes and are instrumental in creating land-scape heterogeneity in arid and semi-arid regions. Rainfall event characteristics were analyzed using an automatic tip-ping-bucket rain-gauge record across the entire summer monsoon season from 2008 to 2015 at the arid desert area of Shapotou in the Tengger Desert, China. Changing the minimum inter-event time (MIT) from 30 min to 24 h alters the number of rainfall events from 64 to 25 for the event depth larger than 0.1 mm. The mean rainfall intensity declined from 0.95 mm/h to 0.53 mm/h, and the geometric mean event duration rose from 0.55 h to 4.4 h. The number of rainfall events, mean rainfall intensity, and geometric mean event duration differed under different criteria of individual rainfall depths, except that for an individual rainfall depth of 0.5, 1.0, and 5.0 mm. The aforementioned features differed only at the lowest range of the mean rainfall intensity and depth for MIT=3 and 6 h. These findings suggest that identification of event-based rainfall in this specific arid region can be better achieved by setting the MIT at six hours. The wide variation in rainfall event properties indicate the need for paying more attention to the proper selection and reporting of event criteria in studies that adopt event-based data analysis. This is especially true in quantifying effective rainfall for soil water replenishment in terms of rainfall depth and intensity with infrequent rainfall events.
基金supported by China's National Natural Science Foundation (No. 41501043)by the "West Light" project of the Chinese Academy of Sciencesby the project of 60th Chinese postdoctorate science fund (No. 2016M602904)
文摘Iron deficiency chlorosis of Lilium davidii var. unicolor is often the case in practice in alkaline soils of northwest region of China. It is difficult to control iron chlorosis because of high cost and short effective work time of conventional iron fertilizers. In this study, a 2-year field experiment was conducted to evaluate the effects of two slow-release fertilizers on the suppression of iron deficiency chlorosis, soil chemical properties, and the yield and quality of L. davidii var. unicolor. Results show that both coated slow-release iron fertilizers and embedded slow-release iron fertilizer effectively controlled iron-deficiency chlorosis. The application of slow-release iron fertilizers significantly increased plant height and chlorophyll content of L. davidii var. unicolor at different growth stages. Furthermore, coated iron fertilizer application significantly increased starch, protein, soluble sugar and vitamin C content of L. davidii var. unicolor, and it also significantly improved total amino acid content, with increases in essential amino acids(Trp, Leu, Lys, Phe, Val, and Thr contents) and in nonessential amino acids(Asp, Glu, Cit, Ihs, Acc, Ala, Pro, and Cys contents). It was concluded that application of coated slow-release iron fertilizer could be a promising option for suppression of iron deficiency chlorosis and deserves further study.
文摘As an innovation mode of organization, technology alliance has being increasingly paid more attention to by more and more small and medium-sized enterprises (SME). In this paper, on the basis of analyzing the theory and practice meaning of the technology alliance, cooperative game method is used to analyze the forming process of the cooperative mechanism, and it points out that cooperation will make both sides get the largest benefits.
基金supported by the National Natural Science Foundation of China (41530750, 41501108, 41371101)the CAS "Light of West China" Program
文摘An increasing number of studies in recent years has elucidated distinguishable effects of stemflow on hydrology and biogeochemistry within a variety of ecosystems.Nonetheless,no known studies have investigated the temporal variability of stemflow volume within discrete rainfall events for xerophytic shrubs.Here,stemflow was monitored at 5-min intervals using a tipping-bucket rain gage during the 2015 growing season for a xerophytic shrub(Caragana korshinskii)within a water-limited arid desert ecosystem of northern China.We characterized the stemflow temporal variability,along with rainfall,and found the temporal heterogeneity of rainfall clearly affected the timing of stemflow inputs into basal soil within discrete rainfall events.The rainfall threshold value for stemflow generation is not a constant value but a range(0.6~2.1 mm,with an average of 1.1 mm)across rainfall events and is closely associated with the antecedent dry period.Time lags existed between the onset of rainfall and the onset of stemflow,and between rainfall peaks and stemflow peaks.Our findings are expected to be helpful for an improved process-based understanding of the temporal stemflow yield of xerophytic shrubs within water-limited arid desert ecosystems.
基金supported by the 100-Talents Program of the Chinese Academy of Sciences
文摘Soil temperatures at 0, 5, 10 and 20 cm depths were monitored cominuously at different microhabitats (beneath shrub canopy (BSC); bare intershrub spaces (BIS)) induced by xerophytic shrub (Caragana korshinskii Kom.) canopy, respectively. We mainly aimed to assess the effects of shrub canopy and precipitation on the spatial-temporal variability of soil temperature. Results indi- cate that both precipitation and vegetation canopy significantly affect soil temperature. In clear days, soil temperatures within the BSC area were significantly lower than in the BIS at the same soil depth due to shading effects of shrub canopy. Diurnal variations of soil temperature show a unimoclal sinusoidal curve. The amplitude of soil temperature tended to decrease and a hysteresis of di- urnal maximum soil temperature existed at deeper soil layers. Vertical fluctuations of soil temperature displayed four typical curves. In the nighttime (approximately from sunset to sunrise), surface temperature within the BSC area was higher than in the BIS. In rainy days, however, soil temperatures were affected mainly by precipitation and the shrub canopy had a negligible effect on soil temperature, and little difference in soil temperature at the same soil depth was found between the BSC area and in the BIS. Diurnal variations in soil temperature decreased exclusively as rainfall continued and the vertical fluctuations of soil tempera~'e show an increased tendency with increasing soil depth.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23060202)the Chinese National Natural Sciences Foundation(Grant Nos.41530750,41771101).
文摘Water is the most important limiting factor in arid areas,and thus water resource management is critical for the health of dryland ecosystems.However,global climate change and anthropogenic activity make water resource management more difficult,and this situation may be particularly crucial for dryland restoration,because of variation in water uptake patterns associated with artificial revegetation of different ages and vegetation type.However,there is lacking longterm restorations that are suitable for studying this issue.In Shapotou area,Northwest China,artificial revegetation areas were planted several times beginning in 1956,and now form a chronosequence of sand-binding landscapes that are ideal for studying variability in water uptake source by plants over succession.The stable isotopesδ18O andδ2H were employed to investigate the water uptake patterns of the typical revegetation shrubs Artemisia ordosica and Caragana korshinskii,which were planted in different years.We compared the stable isotope ratios of shrub stem water to groundwater,precipitation,and soil water pools at five layers(5−10,10−40,40−80,80−150,and 150−300 cm).The results indicate that Artemisia ordosica derived the majority of their water from the 20−150 cm soil layer,whereas Caragana korshinskii obtained water from the 40−150 cm soil layer.The main water sources of Artemisia ordosica and C.korshinskii plants changed over time,from deeper about 150 cm depth to shallow 20 cm soil layer.This study can provide insights into water uptake patterns of major desert vegetation and thus water management of artificial ecosystems,at least in Northwest China.
文摘The Department of Veterans Affairs (VA) manages the largest healthcare system under a single management structure in the United States. Providing access to high quality healthcare to the VA’s nearly 9 million enrollees is a mission priority for the Veterans Health Administration (VHA), the arm of the VA that oversees all medical facilities and operations. Geographic Information Systems (GIS) tools enable analysts to construct data-driven recommendations to policy makers for providing the best and most timely healthcare to those individuals who have honorably served their country. This paper illustrates how GIS is being used by the VHA and provides the example of acute stroke care access for Veterans in one Veterans Integrated Service Network (VISN) within the VHA.