Objectives To evaluate the association between a KCNQ 1 mutation, R259H, and short QT syndrome (SQTS) and to explore the elec- trophysiological mechanisms underlying their association. Methods We performed genetic s...Objectives To evaluate the association between a KCNQ 1 mutation, R259H, and short QT syndrome (SQTS) and to explore the elec- trophysiological mechanisms underlying their association. Methods We performed genetic screening of SQTS genes in 25 probands and their family members (63 patients). We used direct sequencing to screen the exons and intron-exon boundaries of candidate genes that en- code ion channels which contribute to the repolarization of the ventricular action potential, including KCNQI, KCNH2, KCNE1, KCNE2, KCNJ2, CACNAlc, CACNB2b and CACNA2D1. In one of the 25 SQTS probands screened, we discovered a KCNQ1 mutation, R259H. We cloned R259H and transiently expressed it in HEK-293 cells; then, currents were recorded using whole cell patch clamp techniques. Results R259H-KCNQ 1 showed significantly increased current density, which was approximately 3-fold larger than that of wild type (WT) after a depolarizing pulse at 1 s. The steady state voltage dependence of the activation and inactivation did not show significant differences between the WT and R259H mutation (P 〉 0.05), whereas the time constant of deactivation was markedly prolonged in the mutant compared with the WT in terms of the test potentials, which indicated that the deactivation of R259H was markedly slower than that of the WT. These results suggested that the R259H mutation can effectively increase the slowly activated delayed rectifier potassium current (Irs) in phase 3 of the cardiac action potential, which may be an infrequent cause of QT interval shortening. Conclusions R259H is a gain-of-function muta- tion of the KCNQ1 channel that is responsible for SQTS2. This is the first time that the R259H mutation was detected in Chinese people.展开更多
Objective To study the effect of allitridum on the transient outward potassium current (Ito) of ventricular myocytes in heart failure (HF). Methods The dual enzymatic method was used to separate single ventricular...Objective To study the effect of allitridum on the transient outward potassium current (Ito) of ventricular myocytes in heart failure (HF). Methods The dual enzymatic method was used to separate single ventricular myocytes from Sprague Dawley rats. Patch-clamping was used to record Ito and analyze the effect of allitridum on the current. Results The Ito current had a significant decrease in the HF group, compared with the control group. The density of Ito in the HF group was increased after treatment of allitridum (30 μmol/L). The peak current densities of Ito were enhanced in the HF group from 6.01 ±0.30 pA/pF to 8.41 ±0.54 pA/pF (P 〈 0.01) at +50 mV after treatment with allitridum (30 μmol/L). We also determined the effect of allitridum on the gating mechanism of the Ito in the HF group. Conclusions We found that allitridum increased the Ito by accelerating the activation of channels and shortened the time constants of inactivation, and allitridum decreased the remodeling of Ito in ventricular myocytes of rats with HF.展开更多
Objective To characterize early afterdepolarizations (EADs) caused triggered activity (TA) among calsequestrin-2 (CASQ2) knock-in (CASQ2 KI) mice and its relationship with aging. Methods Electrophysiological p...Objective To characterize early afterdepolarizations (EADs) caused triggered activity (TA) among calsequestrin-2 (CASQ2) knock-in (CASQ2 KI) mice and its relationship with aging. Methods Electrophysiological properties of ventricular myocytes from 3- month (mo, young), 9-mo (adult-l) and 12-too (adult-2) in wild-type (WT) and CASQ2 KI mice were investigated with patch-clamp technique. Results The incidences of EADs and TA in CASQ2 KI cardiomyocytes increased with increasing age. In contrast, WT mice cardiomyocytes showed no significant change in matched-age groups. Compared with that in 3-mo CASQ2 KI mice, the 50% repolarization of action potential (APD50) showed prolongation in both 9-mo and 12-mo ones (9.2±0.9 ms of 9-mo and 10.3 ± 1.2 ms of 12- mo vs. 5.6± 0.3 ms of 3-mo), while the 90 % repolarization of action potential (APD90) was similar among 3 age groups. Compared with 3-mo mice, the 9-mo and 12-mo CASQ2 KI mice showed markedly reduced transient outward potassium current (Ito) densities but increased L-type calcium current (ICa-L) densities. Conlcusion This study suggested that events of EADs and TA in CASQ2 KI mice increased with increasing age, It might be associated partly with the augment of cellular calcium concentration and the prolongation of APD50 induced by decrease of Ito and increase of ICa-L in adult CASQ2 KI mice展开更多
Objective To investigate the characteristics of ectopic automaticity and cation current (If) of cardiac myocytes from pulmonary vein sleeves (PVs) in canines with atrial fibrillation. Methods The canines (8–10 years ...Objective To investigate the characteristics of ectopic automaticity and cation current (If) of cardiac myocytes from pulmonary vein sleeves (PVs) in canines with atrial fibrillation. Methods The canines (8–10 years old) were subjected to long-term, rapid atrial pacing (RAP) for 10 weeks, which induced the atrial fibrillation model. Disassociation of PVs of canines yielded single cardiac myocytes from a Landengorff column. Action potential, If and hyperpolarisation activated cyclic nucleotide-gated (HCN) currents were measured with the patch-clamp technique. Results Compared with the control group, cardiac myocytes from the RAP canine PVs had spontaneous diastolic depolarization, shorter action potential duration, and larger If densities. In the group of RAP cells, the half maximal activation potential (V1/2) was found to be less negative (��105.5 ±5.2 mV) compared to control cells (��87.3 ±4.9 mV). Current densities of If were increased significantly by β-adrenergic receptor stimulation with isoproterenol and caused an acceleration of current activation. In contrast, If currents in the RAP were reduced by carvedilol, a selective beta-adrenergic receptor. Another important finding is that HCN4-based channels may make a significant contribution to If in PVs cells, but not HCN2. Meanwhile, HCN4 current significantly increases in canine PVs cardiac myocytes with RAP. Conclusions The spontaneous action potential and larger If currentwere observed in the PVs cardiac myocytes using RAP, whichmay contribute tomore ectopic activity events to trigger and maintain atrial fibrillation.展开更多
Objective Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be an- ti-arrhythmic. The purpose of our study is to investigate the effects of ALL on t...Objective Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be an- ti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (Ito) and slow delayed rectifier potassium current (IKs). Methods The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record/to and IKs in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. Results The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of/to and IKs in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation ofIto in M layers and partly inhibit the channel openings of/to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of IKs channel in Epi and Endo layers without affecting its activation. Conclusions Our study gives partially explanation about the mechanisms of tmnsmural inhibition of/to and IKs channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.展开更多
Polyoxometalate-based nanocomposites with electrocatalytic activity have been applied in hydrogen evolution reactions(HER).Seawater as the main water resource on the earth should be developed as the water electrolysis...Polyoxometalate-based nanocomposites with electrocatalytic activity have been applied in hydrogen evolution reactions(HER).Seawater as the main water resource on the earth should be developed as the water electrolysis to prepare high-purity hydrogen.In this paper,we used two synthesis strategies to prepare the nanocomposite Co_(4)-POM@Co-PGDY(Co_(4)-POM:the Kegging-type microcrystals of K_(10)[Co_(4)(PW_(9)O_(3)4)2]and Co-PGDY:cobalt-porphyrin linked graphdiyne)with excellent activity for HER.Co-PGDY as the porous material is applied not only as the protection of microcrystals towards the metal ion in seawater but also as the co-electrocatalyst of Co_(4)-POM.Co_(4)-POM@Co-PGDY exhibits excellent HER performance in seawater electrolytes with low overpotential and high stability at high density.Moreover,we have observed a key H_(3)O+intermediate emergence on the surface of nanocomposite during hydrogen evolution process in seawater by Raman synchrotron radiation-based Fourier transform infrared(SR-FTIR).The results in this paper provide an effective strategy for preparing polyoxometalate-based electrocatalysts with high-performance toward hydrogen evolution reaction.展开更多
基金grants obtained from the National Natural Science Foundation of China (No.: 81170177, 81030002) and science and Technology De- partment of Gansu Province Project (145RJZ104).
文摘Objectives To evaluate the association between a KCNQ 1 mutation, R259H, and short QT syndrome (SQTS) and to explore the elec- trophysiological mechanisms underlying their association. Methods We performed genetic screening of SQTS genes in 25 probands and their family members (63 patients). We used direct sequencing to screen the exons and intron-exon boundaries of candidate genes that en- code ion channels which contribute to the repolarization of the ventricular action potential, including KCNQI, KCNH2, KCNE1, KCNE2, KCNJ2, CACNAlc, CACNB2b and CACNA2D1. In one of the 25 SQTS probands screened, we discovered a KCNQ1 mutation, R259H. We cloned R259H and transiently expressed it in HEK-293 cells; then, currents were recorded using whole cell patch clamp techniques. Results R259H-KCNQ 1 showed significantly increased current density, which was approximately 3-fold larger than that of wild type (WT) after a depolarizing pulse at 1 s. The steady state voltage dependence of the activation and inactivation did not show significant differences between the WT and R259H mutation (P 〉 0.05), whereas the time constant of deactivation was markedly prolonged in the mutant compared with the WT in terms of the test potentials, which indicated that the deactivation of R259H was markedly slower than that of the WT. These results suggested that the R259H mutation can effectively increase the slowly activated delayed rectifier potassium current (Irs) in phase 3 of the cardiac action potential, which may be an infrequent cause of QT interval shortening. Conclusions R259H is a gain-of-function muta- tion of the KCNQ1 channel that is responsible for SQTS2. This is the first time that the R259H mutation was detected in Chinese people.
基金Acknowledgments This work was supported by the National Natural Science Foundation of China (No: 81170177, 81030002 and 8147054). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. There is no competing interest to declare.
文摘Objective To study the effect of allitridum on the transient outward potassium current (Ito) of ventricular myocytes in heart failure (HF). Methods The dual enzymatic method was used to separate single ventricular myocytes from Sprague Dawley rats. Patch-clamping was used to record Ito and analyze the effect of allitridum on the current. Results The Ito current had a significant decrease in the HF group, compared with the control group. The density of Ito in the HF group was increased after treatment of allitridum (30 μmol/L). The peak current densities of Ito were enhanced in the HF group from 6.01 ±0.30 pA/pF to 8.41 ±0.54 pA/pF (P 〈 0.01) at +50 mV after treatment with allitridum (30 μmol/L). We also determined the effect of allitridum on the gating mechanism of the Ito in the HF group. Conclusions We found that allitridum increased the Ito by accelerating the activation of channels and shortened the time constants of inactivation, and allitridum decreased the remodeling of Ito in ventricular myocytes of rats with HF.
文摘Objective To characterize early afterdepolarizations (EADs) caused triggered activity (TA) among calsequestrin-2 (CASQ2) knock-in (CASQ2 KI) mice and its relationship with aging. Methods Electrophysiological properties of ventricular myocytes from 3- month (mo, young), 9-mo (adult-l) and 12-too (adult-2) in wild-type (WT) and CASQ2 KI mice were investigated with patch-clamp technique. Results The incidences of EADs and TA in CASQ2 KI cardiomyocytes increased with increasing age. In contrast, WT mice cardiomyocytes showed no significant change in matched-age groups. Compared with that in 3-mo CASQ2 KI mice, the 50% repolarization of action potential (APD50) showed prolongation in both 9-mo and 12-mo ones (9.2±0.9 ms of 9-mo and 10.3 ± 1.2 ms of 12- mo vs. 5.6± 0.3 ms of 3-mo), while the 90 % repolarization of action potential (APD90) was similar among 3 age groups. Compared with 3-mo mice, the 9-mo and 12-mo CASQ2 KI mice showed markedly reduced transient outward potassium current (Ito) densities but increased L-type calcium current (ICa-L) densities. Conlcusion This study suggested that events of EADs and TA in CASQ2 KI mice increased with increasing age, It might be associated partly with the augment of cellular calcium concentration and the prolongation of APD50 induced by decrease of Ito and increase of ICa-L in adult CASQ2 KI mice
文摘Objective To investigate the characteristics of ectopic automaticity and cation current (If) of cardiac myocytes from pulmonary vein sleeves (PVs) in canines with atrial fibrillation. Methods The canines (8–10 years old) were subjected to long-term, rapid atrial pacing (RAP) for 10 weeks, which induced the atrial fibrillation model. Disassociation of PVs of canines yielded single cardiac myocytes from a Landengorff column. Action potential, If and hyperpolarisation activated cyclic nucleotide-gated (HCN) currents were measured with the patch-clamp technique. Results Compared with the control group, cardiac myocytes from the RAP canine PVs had spontaneous diastolic depolarization, shorter action potential duration, and larger If densities. In the group of RAP cells, the half maximal activation potential (V1/2) was found to be less negative (��105.5 ±5.2 mV) compared to control cells (��87.3 ±4.9 mV). Current densities of If were increased significantly by β-adrenergic receptor stimulation with isoproterenol and caused an acceleration of current activation. In contrast, If currents in the RAP were reduced by carvedilol, a selective beta-adrenergic receptor. Another important finding is that HCN4-based channels may make a significant contribution to If in PVs cells, but not HCN2. Meanwhile, HCN4 current significantly increases in canine PVs cardiac myocytes with RAP. Conclusions The spontaneous action potential and larger If currentwere observed in the PVs cardiac myocytes using RAP, whichmay contribute tomore ectopic activity events to trigger and maintain atrial fibrillation.
文摘Objective Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be an- ti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (Ito) and slow delayed rectifier potassium current (IKs). Methods The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record/to and IKs in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. Results The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of/to and IKs in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation ofIto in M layers and partly inhibit the channel openings of/to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of IKs channel in Epi and Endo layers without affecting its activation. Conclusions Our study gives partially explanation about the mechanisms of tmnsmural inhibition of/to and IKs channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.
基金supported by the National Natural Science Foundation of China(Nos.21831001,21801014,22171024,and 22202037)the Fundamental Research Funds for the Central Universities(No.2412023QD019).
文摘Polyoxometalate-based nanocomposites with electrocatalytic activity have been applied in hydrogen evolution reactions(HER).Seawater as the main water resource on the earth should be developed as the water electrolysis to prepare high-purity hydrogen.In this paper,we used two synthesis strategies to prepare the nanocomposite Co_(4)-POM@Co-PGDY(Co_(4)-POM:the Kegging-type microcrystals of K_(10)[Co_(4)(PW_(9)O_(3)4)2]and Co-PGDY:cobalt-porphyrin linked graphdiyne)with excellent activity for HER.Co-PGDY as the porous material is applied not only as the protection of microcrystals towards the metal ion in seawater but also as the co-electrocatalyst of Co_(4)-POM.Co_(4)-POM@Co-PGDY exhibits excellent HER performance in seawater electrolytes with low overpotential and high stability at high density.Moreover,we have observed a key H_(3)O+intermediate emergence on the surface of nanocomposite during hydrogen evolution process in seawater by Raman synchrotron radiation-based Fourier transform infrared(SR-FTIR).The results in this paper provide an effective strategy for preparing polyoxometalate-based electrocatalysts with high-performance toward hydrogen evolution reaction.