The thermal entanglement in the triangular molecular spin ring with Dzyaloshinskii-Moriya interaction is studied. The concurrences of arbitrary two spins of the triangular molecular spin ring for various cases are eva...The thermal entanglement in the triangular molecular spin ring with Dzyaloshinskii-Moriya interaction is studied. The concurrences of arbitrary two spins of the triangular molecular spin ring for various cases are evaluated. The tendency of the concurrence with Dzyaloshinskii-Moriya interaction and temperature is analysed and discussed. We note that the concurrence arrives at its maximum in the regime with the large Dzyaloshinskii-Moriya interaction and low temperature, and gradually decreases to zero with the increase of temperature. The concurrence has different features for the ferromagnetic and antiferromagnetic cases. For completeness, we also numerically calculate the concurrence of spin rings with N 〉 3 spins and analyse their behaviours.展开更多
This paper investigates the entanglement in an XX-type spin chain with Dzyaloshinskii--Moriya interaction under an external magnetic field. The von Neumann entropy of entanglement between two blocks for the ground sta...This paper investigates the entanglement in an XX-type spin chain with Dzyaloshinskii--Moriya interaction under an external magnetic field. The von Neumann entropy of entanglement between two blocks for the ground state of the system is evaluated. It analyses and discusses the scaling behaviour of the entanglement entropy.展开更多
We investigate the thermal entanglement in the Lipkin-Meshkov-G1ick (LMG) model which consists of spin-1/2 particles with XXZ-type exchange interactions between any pair of them. The ferromagnetic (FM) and antifer...We investigate the thermal entanglement in the Lipkin-Meshkov-G1ick (LMG) model which consists of spin-1/2 particles with XXZ-type exchange interactions between any pair of them. The ferromagnetic (FM) and antiferromagnetic (AFM) cases are completely analyzed at both finite temperature and zero temperature. According to the results obtained by accurate numerical calculation, several interesting physic phenomena and characteristics of thermal entanglement in the LMG model are found. Not only do we evaluate the entanglement of the LMG model, but also discover the correlations between macroscopic physical quantities and thermal entanglement.展开更多
基金Project supported by the Teaching and Research Foundation for the Outstanding Young Faculty of Southeast University,China
文摘The thermal entanglement in the triangular molecular spin ring with Dzyaloshinskii-Moriya interaction is studied. The concurrences of arbitrary two spins of the triangular molecular spin ring for various cases are evaluated. The tendency of the concurrence with Dzyaloshinskii-Moriya interaction and temperature is analysed and discussed. We note that the concurrence arrives at its maximum in the regime with the large Dzyaloshinskii-Moriya interaction and low temperature, and gradually decreases to zero with the increase of temperature. The concurrence has different features for the ferromagnetic and antiferromagnetic cases. For completeness, we also numerically calculate the concurrence of spin rings with N 〉 3 spins and analyse their behaviours.
基金supported by the Teaching and Research Foundation for the Outstanding Young Faculty of Southeast University
文摘This paper investigates the entanglement in an XX-type spin chain with Dzyaloshinskii--Moriya interaction under an external magnetic field. The von Neumann entropy of entanglement between two blocks for the ground state of the system is evaluated. It analyses and discusses the scaling behaviour of the entanglement entropy.
基金Supported by the National Natural Science Foundation of China under Grant No. 11004028the Science and Technology Foundation of Southeast University under Grant No. KJ2010417the Teaching and Research Foundation for the Outstanding Young Faculty of Southeast University
文摘We investigate the thermal entanglement in the Lipkin-Meshkov-G1ick (LMG) model which consists of spin-1/2 particles with XXZ-type exchange interactions between any pair of them. The ferromagnetic (FM) and antiferromagnetic (AFM) cases are completely analyzed at both finite temperature and zero temperature. According to the results obtained by accurate numerical calculation, several interesting physic phenomena and characteristics of thermal entanglement in the LMG model are found. Not only do we evaluate the entanglement of the LMG model, but also discover the correlations between macroscopic physical quantities and thermal entanglement.