期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
嵌入式设备的轻量化百香果检测模型
被引量:
10
1
作者
罗志聪
李鹏博
+2 位作者
宋飞宇
孙奇燕
丁昊凡
《农业机械学报》
EI
CAS
CSCD
北大核心
2022年第11期262-269,322,共9页
为在有限的嵌入式设备资源下达到实时检测要求,提出一种基于改进YOLO v5的百香果轻量化检测模型(MbECA-v5)。首先,使用MobileNetV3替换主干特征提取网络,利用深度可分离卷积代替传统卷积减少模型的参数量。其次,嵌入有效通道注意力网络(...
为在有限的嵌入式设备资源下达到实时检测要求,提出一种基于改进YOLO v5的百香果轻量化检测模型(MbECA-v5)。首先,使用MobileNetV3替换主干特征提取网络,利用深度可分离卷积代替传统卷积减少模型的参数量。其次,嵌入有效通道注意力网络(ECANet)关注百香果整体,引入逐点卷积连接特征提取网络和特征融合网络,提高网络对百香果图像的特征提取能力和拟合能力。最后,运用跨域与域内多轮训练相结合的迁移学习策略提高网络检测精度。试验结果表明,改进后模型的精确率和召回率为95.3%和88.1%;平均精度均值为88.3%,较改进前提高0.2个百分点。模型计算量为6.6 GFLOPs,体积仅为6.41 MB,约为改进前模型的1/2,在嵌入式设备实时检测速度为10.92 f/s,约为SSD、Faster RCNN、YOLO v5s模型的14倍、39倍、1.7倍。因此,基于改进YOLO v5的轻量化模型提高了检测精度和大幅降低了计算量和模型体积,在嵌入式设备上能够高效实时地对复杂果园环境中的百香果进行检测。
展开更多
关键词
百香果
嵌入式设备
YOLO
v5
轻量化
迁移学习
下载PDF
职称材料
题名
嵌入式设备的轻量化百香果检测模型
被引量:
10
1
作者
罗志聪
李鹏博
宋飞宇
孙奇燕
丁昊凡
机构
福建农林大学机电工程学院
福建省农业信息感知技术重点实验室
福建农林大学计算机与信息学院
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2022年第11期262-269,322,共9页
基金
海峡博士后交流资助计划项目
文摘
为在有限的嵌入式设备资源下达到实时检测要求,提出一种基于改进YOLO v5的百香果轻量化检测模型(MbECA-v5)。首先,使用MobileNetV3替换主干特征提取网络,利用深度可分离卷积代替传统卷积减少模型的参数量。其次,嵌入有效通道注意力网络(ECANet)关注百香果整体,引入逐点卷积连接特征提取网络和特征融合网络,提高网络对百香果图像的特征提取能力和拟合能力。最后,运用跨域与域内多轮训练相结合的迁移学习策略提高网络检测精度。试验结果表明,改进后模型的精确率和召回率为95.3%和88.1%;平均精度均值为88.3%,较改进前提高0.2个百分点。模型计算量为6.6 GFLOPs,体积仅为6.41 MB,约为改进前模型的1/2,在嵌入式设备实时检测速度为10.92 f/s,约为SSD、Faster RCNN、YOLO v5s模型的14倍、39倍、1.7倍。因此,基于改进YOLO v5的轻量化模型提高了检测精度和大幅降低了计算量和模型体积,在嵌入式设备上能够高效实时地对复杂果园环境中的百香果进行检测。
关键词
百香果
嵌入式设备
YOLO
v5
轻量化
迁移学习
Keywords
passion fruit
embedded device
YOLO v5
lightweight
migration study
分类号
TS255.7 [轻工技术与工程—农产品加工及贮藏工程]
TP183 [自动化与计算机技术—控制理论与控制工程]
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
嵌入式设备的轻量化百香果检测模型
罗志聪
李鹏博
宋飞宇
孙奇燕
丁昊凡
《农业机械学报》
EI
CAS
CSCD
北大核心
2022
10
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部