This numerical study proposes a cell sorting technique based on dielectrophoresis(DEP)in a microfluidic chip.Under the joint effect of DEP and fluid drag,white blood cells and circulating tumor cells are separated be...This numerical study proposes a cell sorting technique based on dielectrophoresis(DEP)in a microfluidic chip.Under the joint effect of DEP and fluid drag,white blood cells and circulating tumor cells are separated because of different dielectric properties.First,the mathematical models of device geometry,single cell,DEP force,electric field,and flow field are established to simulate the cell motion.Based on the simulation model,important boundary parameters are discussed to optimize the cell sorting ability of the device.A proper matching relationship between voltage and flow rate is then provided.The inlet and outlet conditions are also investigated to control the particle motion in the flow field.The significance of this study is to verify the cell separating ability of the microfluidic chip,and to provide a logistic design for the separation of rare diseased cells.展开更多
文摘This numerical study proposes a cell sorting technique based on dielectrophoresis(DEP)in a microfluidic chip.Under the joint effect of DEP and fluid drag,white blood cells and circulating tumor cells are separated because of different dielectric properties.First,the mathematical models of device geometry,single cell,DEP force,electric field,and flow field are established to simulate the cell motion.Based on the simulation model,important boundary parameters are discussed to optimize the cell sorting ability of the device.A proper matching relationship between voltage and flow rate is then provided.The inlet and outlet conditions are also investigated to control the particle motion in the flow field.The significance of this study is to verify the cell separating ability of the microfluidic chip,and to provide a logistic design for the separation of rare diseased cells.