针对传统FCM(fuzzy c-means)算法抗噪性差的问题,提出了一种基于一致性分片的模糊c均值聚类算法。为避免额外的空间邻域约束项带来的控制变量设置问题,该算法直接将FCM应用于图像片空间。为减弱空间邻域对图像边缘的模糊,采用基于置信...针对传统FCM(fuzzy c-means)算法抗噪性差的问题,提出了一种基于一致性分片的模糊c均值聚类算法。为避免额外的空间邻域约束项带来的控制变量设置问题,该算法直接将FCM应用于图像片空间。为减弱空间邻域对图像边缘的模糊,采用基于置信区间的局部多项式交叉近似技术(local polynomial approximation and intersection of confidenec intervals,LPA-ICI)构造自适应形状一致性分片。在脑磁共振图像上的实验表明,与传统的FCM算法相比,该算法具有更高的分割精度和运行效率。展开更多
文摘针对传统FCM(fuzzy c-means)算法抗噪性差的问题,提出了一种基于一致性分片的模糊c均值聚类算法。为避免额外的空间邻域约束项带来的控制变量设置问题,该算法直接将FCM应用于图像片空间。为减弱空间邻域对图像边缘的模糊,采用基于置信区间的局部多项式交叉近似技术(local polynomial approximation and intersection of confidenec intervals,LPA-ICI)构造自适应形状一致性分片。在脑磁共振图像上的实验表明,与传统的FCM算法相比,该算法具有更高的分割精度和运行效率。