By a proper thermal treatment, the nitrogen atoms can enter the R2Fe17 structure. The crystallographic and intrinsic magnetic properties as well as their relationship have been studied by magnetic measurements, X-ray ...By a proper thermal treatment, the nitrogen atoms can enter the R2Fe17 structure. The crystallographic and intrinsic magnetic properties as well as their relationship have been studied by magnetic measurements, X-ray and neutron diffraction techniques. The neutron data indicate that the nitrogen atoms occupy the interstitial sites in the Th2Zn17-type rhom-bohedral structure. The inserting nitrogen atoms are found to dilate the cell volume, increase the Curie temperature and enhance the saturation moment by raising the difference in the electron number between the spin-up and spin-down 3d subbands of the Fe atoms. Furthermore, the nitrogen atoms have an important effect on the magnetocrystallic anisotropy, which results in an easy axis with Sm2Fe17N2.4. All these make Sm2Fe17N2.4 favorable for permanent magnet applications.展开更多
基金Project supported by the National Natural Science Foundation of China and the Open Magnetism Laboratory.
文摘By a proper thermal treatment, the nitrogen atoms can enter the R2Fe17 structure. The crystallographic and intrinsic magnetic properties as well as their relationship have been studied by magnetic measurements, X-ray and neutron diffraction techniques. The neutron data indicate that the nitrogen atoms occupy the interstitial sites in the Th2Zn17-type rhom-bohedral structure. The inserting nitrogen atoms are found to dilate the cell volume, increase the Curie temperature and enhance the saturation moment by raising the difference in the electron number between the spin-up and spin-down 3d subbands of the Fe atoms. Furthermore, the nitrogen atoms have an important effect on the magnetocrystallic anisotropy, which results in an easy axis with Sm2Fe17N2.4. All these make Sm2Fe17N2.4 favorable for permanent magnet applications.