针对用有限元法进行连续体结构拓扑优化时需不断重构网格来处理网格畸变和网格移动,且存在数值计算不稳定等问题,基于无网格径向点插值方法(Radial Point Interpolation Method,RPIM)对简谐激励下的连续体结构进行拓扑优化.选取节点的...针对用有限元法进行连续体结构拓扑优化时需不断重构网格来处理网格畸变和网格移动,且存在数值计算不稳定等问题,基于无网格径向点插值方法(Radial Point Interpolation Method,RPIM)对简谐激励下的连续体结构进行拓扑优化.选取节点的相对密度作为设计变量,以结构动柔度最小化为目标函数,基于带惩罚的各向同性固体微结构(Solid Isotropic Microstructure with Penalization,SIMP)模型建立简谐激励下的优化模型;采用伴随法求解得到目标函数的敏度分析公式;利用优化准则法求解优化模型.经典的二维连续体结构拓扑优化算例证明该方法的可行性和有效性.展开更多
文摘针对用有限元法进行连续体结构拓扑优化时需不断重构网格来处理网格畸变和网格移动,且存在数值计算不稳定等问题,基于无网格径向点插值方法(Radial Point Interpolation Method,RPIM)对简谐激励下的连续体结构进行拓扑优化.选取节点的相对密度作为设计变量,以结构动柔度最小化为目标函数,基于带惩罚的各向同性固体微结构(Solid Isotropic Microstructure with Penalization,SIMP)模型建立简谐激励下的优化模型;采用伴随法求解得到目标函数的敏度分析公式;利用优化准则法求解优化模型.经典的二维连续体结构拓扑优化算例证明该方法的可行性和有效性.