期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于EFAST的在线极限学习机节点剪枝方法 被引量:1
1
作者 丁王斌 魏少涵 张碧仙 《三明学院学报》 2018年第4期55-59,共5页
针对在线极限学习机(OS-ELM)的隐藏层网络结构优化问题,设计了一种能自适应调整网络结构的在线极限学习方法(FOS-ELM)。该方法首先利用扩展的傅里叶振幅敏感度测试(EFAST),对OS-ELM中的各个隐藏层节点敏感度进行分析,再通过移除低敏感... 针对在线极限学习机(OS-ELM)的隐藏层网络结构优化问题,设计了一种能自适应调整网络结构的在线极限学习方法(FOS-ELM)。该方法首先利用扩展的傅里叶振幅敏感度测试(EFAST),对OS-ELM中的各个隐藏层节点敏感度进行分析,再通过移除低敏感的隐藏层节点,从而达到对OS-ELM的网络结构进行优化的目的。从实验结果中分析,相比标准的OS-ELM,CEOS-ELM和HOS-ELM,在保证泛化精度的条件下,通过本文训练方法所需的隐藏层节点数均少于这3种方法。 展开更多
关键词 在线极限学习机 迭代最小二乘法 扩展的傅里叶振幅敏感度测试
下载PDF
智能课堂监控与分析系统 被引量:5
2
作者 戴振泽 施艳 +2 位作者 郑少伟 郭梓文 丁王斌 《软件工程》 2018年第6期33-35,32,共4页
为解决传统监控系统耗时长,效率低,可靠性差等问题,本文基于人工智能技术,对传统监控系统进行改进提升,设计一个智能课堂监控与分析系统。该系统综合使用Java编程技术、图像视频处理技术、机器学习技术,对学生在课堂上的行为表现进行智... 为解决传统监控系统耗时长,效率低,可靠性差等问题,本文基于人工智能技术,对传统监控系统进行改进提升,设计一个智能课堂监控与分析系统。该系统综合使用Java编程技术、图像视频处理技术、机器学习技术,对学生在课堂上的行为表现进行智能地识别与分析,实现从人工监控到智能监控的转变,从而大幅提升课堂质量管控。 展开更多
关键词 智能课堂 视频监控 人工智能
下载PDF
SeRN:A Two-Stage Framework of Registration for Semi-Supervised Learning for Medical Images 被引量:1
3
作者 Jia Dengqiang Luo Xinzhe +2 位作者 Ding Wangbin Huang Liqin Zhuang Xiahai 《Journal of Shanghai Jiaotong university(Science)》 EI 2022年第2期176-189,共14页
Significant breakthroughs in medical image registration have been achieved using deep neural networks(DNNs).However,DNN-based end-to-end registration methods often require large quantities of data or adequate annotati... Significant breakthroughs in medical image registration have been achieved using deep neural networks(DNNs).However,DNN-based end-to-end registration methods often require large quantities of data or adequate annotations for training.To leverage the intensity information of abundant unlabeled images,unsupervised registration methods commonly employ intensity-based similarity measures to optimize the network parameters.However,finding a sufficiently robust measure can be challenging for specific registration applications.Weakly supervised registration methods use anatomical labels to estimate the deformation between images.High-level structural information in label images is more reliable and practical for estimating the voxel correspondence of anatomic regions of interest between images,whereas label images are extremely difficult to collect.In this paper,we propose a two-stage semi-supervised learning framework for medical image registration,which consists of unsupervised and weakly supervised registration networks.The proposed semi-supervised learning framework is trained with intensity information from available images,label information from a relatively small number of labeled images and pseudo-label information from unlabeled images.Experimental results on two datasets(cardiac and abdominal images)demonstrate the efficacy and efficiency of this method in intra-and inter-modality medical image registrations,as well as its superior performance when a vast amount of unlabeled data and a small set of annotations are available.Our code is publicly available at at https://github.com/jdq818/SeRN. 展开更多
关键词 medical image registration semi-supervised learning intra-modality inter-modality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部