期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于类别特征梯度提升的冷轧带钢板形预测模型 被引量:8
1
作者 丁肇印 丁成砚 +1 位作者 孙杰 张殿华 《轧钢》 2022年第6期99-105,共7页
板形控制是冷轧带钢生产过程的核心技术。为了提升板形预设定和闭环反馈控制效果,建立高精度的板形预测模型非常必要。提出了一种基于类别特征梯度提升的冷轧带钢板形预测模型,通过某1 450 mm冷连轧生产线采集的生产数据建立模型,采用... 板形控制是冷轧带钢生产过程的核心技术。为了提升板形预设定和闭环反馈控制效果,建立高精度的板形预测模型非常必要。提出了一种基于类别特征梯度提升的冷轧带钢板形预测模型,通过某1 450 mm冷连轧生产线采集的生产数据建立模型,采用贪婪搜索和交叉验证的方式进行超参数设置,以自适应提升模型、梯度提升决策树模型和深度学习神经网络模型作为对比。结果表明:类别特征梯度提升模型的RMSE为0.666 IU,并且有90.397%的预测数据绝对误差小于1 IU,较其他3种模型有更好的表现,对冷轧带钢板形预测有更好的鲁棒性和预测精度。 展开更多
关键词 冷轧带钢 板形预测 类别特征梯度提升模型 集成学习
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部