The finite-time Mittag-Leffler synchronization is investigated for fractional-order delayed memristive neural networks(FDMNN)with parameters uncertainty and discontinuous activation functions.The relevant results are ...The finite-time Mittag-Leffler synchronization is investigated for fractional-order delayed memristive neural networks(FDMNN)with parameters uncertainty and discontinuous activation functions.The relevant results are obtained under the framework of Filippov for such systems.Firstly,the novel feedback controller,which includes the discontinuous functions and time delays,is proposed to investigate such systems.Secondly,the conditions on finite-time Mittag-Leffler synchronization of FDMNN are established according to the properties of fractional-order calculus and inequality analysis technique.At the same time,the upper bound of the settling time for Mittag-Leffler synchronization is accurately estimated.In addition,by selecting the appropriate parameters of the designed controller and utilizing the comparison theorem for fractional-order systems,the global asymptotic synchronization is achieved as a corollary.Finally,a numerical example is given to indicate the correctness of the obtained conclusions.展开更多
Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valu...Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valued sign function, a novel complex-valued feedback controller is devised to research such systems. Under the framework of Filippov solution, differential inclusion theory and Lyapunov stability theorem, the finite-time Mittag-Leffler synchronization(FTMLS) of FCVMNNs with time delay can be realized. Meanwhile, the upper bound of the synchronization settling time(SST) is less conservative than previous results. In addition, by adjusting controller parameters, the global asymptotic synchronization of FCVMNNs with time delay can also be realized, which improves and enrich some existing results. Lastly,some simulation examples are designed to verify the validity of conclusions.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61703312 and 61703313)。
文摘The finite-time Mittag-Leffler synchronization is investigated for fractional-order delayed memristive neural networks(FDMNN)with parameters uncertainty and discontinuous activation functions.The relevant results are obtained under the framework of Filippov for such systems.Firstly,the novel feedback controller,which includes the discontinuous functions and time delays,is proposed to investigate such systems.Secondly,the conditions on finite-time Mittag-Leffler synchronization of FDMNN are established according to the properties of fractional-order calculus and inequality analysis technique.At the same time,the upper bound of the settling time for Mittag-Leffler synchronization is accurately estimated.In addition,by selecting the appropriate parameters of the designed controller and utilizing the comparison theorem for fractional-order systems,the global asymptotic synchronization is achieved as a corollary.Finally,a numerical example is given to indicate the correctness of the obtained conclusions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62176189 and 62106181)the Hubei Province Key Laboratory of Systems Science in Metallurgical Process (Wuhan University of Science and Technology) (Grant No. Y202002)。
文摘Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valued sign function, a novel complex-valued feedback controller is devised to research such systems. Under the framework of Filippov solution, differential inclusion theory and Lyapunov stability theorem, the finite-time Mittag-Leffler synchronization(FTMLS) of FCVMNNs with time delay can be realized. Meanwhile, the upper bound of the synchronization settling time(SST) is less conservative than previous results. In addition, by adjusting controller parameters, the global asymptotic synchronization of FCVMNNs with time delay can also be realized, which improves and enrich some existing results. Lastly,some simulation examples are designed to verify the validity of conclusions.