Relation between doping and texture and property of tantalum bar and wire was carefully investigated by optical microscope, SEM fractograph, electron microprobe analysis, density test. observation of TEM and mechanica...Relation between doping and texture and property of tantalum bar and wire was carefully investigated by optical microscope, SEM fractograph, electron microprobe analysis, density test. observation of TEM and mechanical property test at room temperature. It is illustrated that the grain of tantalum bar after sintering reduces with the increasing of dopant quantity, and the effect of dopant Ce on reduction of the grain is more obvious than that of dopant Ge, even that sintering is be- coming insufficient and the density of tantalum bar tends to be lower with the increaseing of dopant Ce The recrystallization temperature of tantalum wire increases and the grain of texture reduces with the increaseing of dopants quantity. The tensile strength of tantalum wire at room temperature increases with the increasing of dopants quantity, while its elongation decreases with the increase of dopant Ge quantity and rises with theincrease of dopant Ce quantity. And the strengthening effect of dopant Ce is clearer than that of dopant Ge.展开更多
Effect of different dopants and various dopants quantity at different annealing temperatures on microstructure of tantalum wire, bending of tantalum wire after sintering and bending after pressing into tantalum powder...Effect of different dopants and various dopants quantity at different annealing temperatures on microstructure of tantalum wire, bending of tantalum wire after sintering and bending after pressing into tantalum powder and sintering were investigated through observation of microstructure and testing of bending of tantalum wire after sintering and bending after pressing into tantalum powder and sintering. The results show that the recrystallization temperature of tantalum wire increases and the grain of microstructure can be reduced with the increase of dopants quantity. At the same time, the effect of dopant Ce on reduction of the grain is more obvious than that of dopant Ge. The bending time of tantalum wire after sintering increases with the increase of dopant Ge or Ce quantity. Under the same condition, the bending time of tantalum wire after pressing into tantalum powder and sintering worsens with the increase of oxygen content in tantalum powder. The bending time of tantalum wire doped with Ge and Ce after pressing into tantalum powder and sintering is better than that of tantalum wire doped with Ge, while that of tantalum wire doped with Ge is better than that of pure one when oxygen content in tantalum powder is not too high.展开更多
文摘Relation between doping and texture and property of tantalum bar and wire was carefully investigated by optical microscope, SEM fractograph, electron microprobe analysis, density test. observation of TEM and mechanical property test at room temperature. It is illustrated that the grain of tantalum bar after sintering reduces with the increasing of dopant quantity, and the effect of dopant Ce on reduction of the grain is more obvious than that of dopant Ge, even that sintering is be- coming insufficient and the density of tantalum bar tends to be lower with the increaseing of dopant Ce The recrystallization temperature of tantalum wire increases and the grain of texture reduces with the increaseing of dopants quantity. The tensile strength of tantalum wire at room temperature increases with the increasing of dopants quantity, while its elongation decreases with the increase of dopant Ge quantity and rises with theincrease of dopant Ce quantity. And the strengthening effect of dopant Ce is clearer than that of dopant Ge.
文摘Effect of different dopants and various dopants quantity at different annealing temperatures on microstructure of tantalum wire, bending of tantalum wire after sintering and bending after pressing into tantalum powder and sintering were investigated through observation of microstructure and testing of bending of tantalum wire after sintering and bending after pressing into tantalum powder and sintering. The results show that the recrystallization temperature of tantalum wire increases and the grain of microstructure can be reduced with the increase of dopants quantity. At the same time, the effect of dopant Ce on reduction of the grain is more obvious than that of dopant Ge. The bending time of tantalum wire after sintering increases with the increase of dopant Ge or Ce quantity. Under the same condition, the bending time of tantalum wire after pressing into tantalum powder and sintering worsens with the increase of oxygen content in tantalum powder. The bending time of tantalum wire doped with Ge and Ce after pressing into tantalum powder and sintering is better than that of tantalum wire doped with Ge, while that of tantalum wire doped with Ge is better than that of pure one when oxygen content in tantalum powder is not too high.