期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于MRT-LDA模型的微博文本分类
被引量:
2
1
作者
庞雄文
万本帅
王盼
《计算机科学》
CSCD
北大核心
2017年第8期236-241,259,共7页
微博的广泛使用产生了大量微博数据,这些数据中包含有大量有价值的信息。然而由于微博信息的文本内容简短且其本身带有一些结构化的社会网络方面的信息,传统的主题模型建模方法并不能十分有效地处理微博信息。根据微博信息的特点,提出...
微博的广泛使用产生了大量微博数据,这些数据中包含有大量有价值的信息。然而由于微博信息的文本内容简短且其本身带有一些结构化的社会网络方面的信息,传统的主题模型建模方法并不能十分有效地处理微博信息。根据微博信息的特点,提出一个基于Latent Dirichlet Allocation(LDA)的微博生成模型MRT-LDA,利用微博之间的转发、对话、支持(赞)和评论等关系来计算微博之间的相关性,综合考虑微博之间的相关性和同一用户微博信息间的关系,来辅助对微博的主题进行挖掘。采用吉布斯抽样法对模型进行推导,结果表明该模型能有效地对微博数据进行文本挖掘。
展开更多
关键词
微博
主题挖掘
LDA
MRT-LDA
概率生成模型
社交网络
下载PDF
职称材料
题名
基于MRT-LDA模型的微博文本分类
被引量:
2
1
作者
庞雄文
万本帅
王盼
机构
华南师范大学计算机学院
出处
《计算机科学》
CSCD
北大核心
2017年第8期236-241,259,共7页
基金
国家科技部项目(2015BAK36B06)资助
文摘
微博的广泛使用产生了大量微博数据,这些数据中包含有大量有价值的信息。然而由于微博信息的文本内容简短且其本身带有一些结构化的社会网络方面的信息,传统的主题模型建模方法并不能十分有效地处理微博信息。根据微博信息的特点,提出一个基于Latent Dirichlet Allocation(LDA)的微博生成模型MRT-LDA,利用微博之间的转发、对话、支持(赞)和评论等关系来计算微博之间的相关性,综合考虑微博之间的相关性和同一用户微博信息间的关系,来辅助对微博的主题进行挖掘。采用吉布斯抽样法对模型进行推导,结果表明该模型能有效地对微博数据进行文本挖掘。
关键词
微博
主题挖掘
LDA
MRT-LDA
概率生成模型
社交网络
Keywords
Micro-blog
Topic mining
LDA
MRT-LDA
Probabilistic generative model
Social network
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于MRT-LDA模型的微博文本分类
庞雄文
万本帅
王盼
《计算机科学》
CSCD
北大核心
2017
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部