期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CNN-GRU-SSA组合模型的PM_(2.5)浓度预测
1
作者
林买金
张露露
+4 位作者
唐友兵
孟春阳
张茗斐
万梓康
谢劭峰
《科学技术与工程》
北大核心
2024年第31期13269-13276,共8页
为了解决门控循环单元(gated recurrent unit,GRU)超参数选取困难的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)、门控循环单元和麻雀搜索算法(sparrow search algorithm,SSA)的组合模型(CNN-GRU-SSA)。首先利用...
为了解决门控循环单元(gated recurrent unit,GRU)超参数选取困难的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)、门控循环单元和麻雀搜索算法(sparrow search algorithm,SSA)的组合模型(CNN-GRU-SSA)。首先利用CNN对输入的多维数据集进行特征提取;然后将CNN提取到的特征输入GRU模型;最后使用SSA算法优化GRU模型的超参数,并将其应用于PM_(2.5)浓度预测。选取西部城市成都与东部城市杭州作为研究区域,使用2021年12月1日—2022年2月13日的大气污染物、气象因素、边界层高度(boundary layer height,BLH)以及大气可降水量(precipitable water vapor,PWV)的小时数据进行建模,分别预测两市2022年2月14日—2月28日PM_(2.5)浓度变化。实验结果表明,CNN-GRU-SSA模型预测精度与其他模型相比有明显提高,其中成都的预测值最接近实际值。
展开更多
关键词
PM_(2.5)
麻雀搜索算法
卷积神经网络
门控循环单元
PWV
下载PDF
职称材料
题名
基于CNN-GRU-SSA组合模型的PM_(2.5)浓度预测
1
作者
林买金
张露露
唐友兵
孟春阳
张茗斐
万梓康
谢劭峰
机构
桂林理工大学测绘地理信息学院
桂林理工大学旅游与风景园林学院
出处
《科学技术与工程》
北大核心
2024年第31期13269-13276,共8页
基金
国家自然科学基金(41864002)。
文摘
为了解决门控循环单元(gated recurrent unit,GRU)超参数选取困难的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)、门控循环单元和麻雀搜索算法(sparrow search algorithm,SSA)的组合模型(CNN-GRU-SSA)。首先利用CNN对输入的多维数据集进行特征提取;然后将CNN提取到的特征输入GRU模型;最后使用SSA算法优化GRU模型的超参数,并将其应用于PM_(2.5)浓度预测。选取西部城市成都与东部城市杭州作为研究区域,使用2021年12月1日—2022年2月13日的大气污染物、气象因素、边界层高度(boundary layer height,BLH)以及大气可降水量(precipitable water vapor,PWV)的小时数据进行建模,分别预测两市2022年2月14日—2月28日PM_(2.5)浓度变化。实验结果表明,CNN-GRU-SSA模型预测精度与其他模型相比有明显提高,其中成都的预测值最接近实际值。
关键词
PM_(2.5)
麻雀搜索算法
卷积神经网络
门控循环单元
PWV
Keywords
PM_(2.5)
sparrow search algorithm
convolutional neural network
gated recurrent unit
PWV
分类号
P228 [天文地球—大地测量学与测量工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CNN-GRU-SSA组合模型的PM_(2.5)浓度预测
林买金
张露露
唐友兵
孟春阳
张茗斐
万梓康
谢劭峰
《科学技术与工程》
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部