期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于改进YOLOv4算法的茶树芽叶采摘点识别及定位方法
被引量:
6
1
作者
徐凤如
张昆
明
+5 位作者
张武
王瑞卿
汪涛
万盛明
刘波
饶元
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
2022年第4期460-471,共12页
针对复杂环境下农业采茶机器人无法快速、准确地识别与定位茶树芽叶采摘点的问题,本文采用改进型YOLOv4-Dense算法和OpenCV图像处理方法,对茶树芽叶采摘点的定位问题进行研究。首先,基于YOLOv4算法,将CSPDarkNet53主干特征提取网络中的R...
针对复杂环境下农业采茶机器人无法快速、准确地识别与定位茶树芽叶采摘点的问题,本文采用改进型YOLOv4-Dense算法和OpenCV图像处理方法,对茶树芽叶采摘点的定位问题进行研究。首先,基于YOLOv4算法,将CSPDarkNet53主干特征提取网络中的ResNet单元替换为DenseNet单元,使用改进后的算法模型对采集的茶树数据集进行芽叶目标检测;其次,运用OpenCV图像处理方法进行RGB-HSV颜色转换获取芽叶的轮廓,并基于形态学算法定位采摘点的位置;最后,开展采摘点定位方法的对比实验,分别与矩函数法、最小外接矩形中心点法的定位结果进行对比。实验结果表明:1)改进型YOLOv4-Dense算法在芽叶目标检测上的精确率为91.83%,召回率为68.84%,AP值为86.55%,F1分数为0.79;与YOLOv4模型的精确率、召回率、AP值、F1分数相比分别提升了2.21%,2.00%;2.05%,0.02;与YOLO v3模型相比它们分别提升了,5.56%,15.26%;9.13%,0.13;2)针对自然条件下的茶树芽叶,采用OpenCV图像处理方法定位采摘点的精确率为80.8%,召回率为83.2%,与矩函数法、最小外接矩形中心点法相比,分别提升了3.5%,7.1%;1.4%,6.1%。实验数据说明本研究方法对于芽叶采摘点的准确识别与定位具有一定的借鉴意义。
展开更多
关键词
图像处理
茶树芽叶
采摘点
深度学习
下载PDF
职称材料
题名
一种基于改进YOLOv4算法的茶树芽叶采摘点识别及定位方法
被引量:
6
1
作者
徐凤如
张昆
明
张武
王瑞卿
汪涛
万盛明
刘波
饶元
机构
安徽农业大学信息与计算机学院
出处
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
2022年第4期460-471,共12页
基金
安徽省重点研究和开发计划项目(202204c06020022,201904a06020056,202104a06020012)
智慧农业技术与装备安徽省重点实验室开放基金(APKLSATE2019X001)
安徽农业大学大学生创新创业训练计划项目(S202110364053)。
文摘
针对复杂环境下农业采茶机器人无法快速、准确地识别与定位茶树芽叶采摘点的问题,本文采用改进型YOLOv4-Dense算法和OpenCV图像处理方法,对茶树芽叶采摘点的定位问题进行研究。首先,基于YOLOv4算法,将CSPDarkNet53主干特征提取网络中的ResNet单元替换为DenseNet单元,使用改进后的算法模型对采集的茶树数据集进行芽叶目标检测;其次,运用OpenCV图像处理方法进行RGB-HSV颜色转换获取芽叶的轮廓,并基于形态学算法定位采摘点的位置;最后,开展采摘点定位方法的对比实验,分别与矩函数法、最小外接矩形中心点法的定位结果进行对比。实验结果表明:1)改进型YOLOv4-Dense算法在芽叶目标检测上的精确率为91.83%,召回率为68.84%,AP值为86.55%,F1分数为0.79;与YOLOv4模型的精确率、召回率、AP值、F1分数相比分别提升了2.21%,2.00%;2.05%,0.02;与YOLO v3模型相比它们分别提升了,5.56%,15.26%;9.13%,0.13;2)针对自然条件下的茶树芽叶,采用OpenCV图像处理方法定位采摘点的精确率为80.8%,召回率为83.2%,与矩函数法、最小外接矩形中心点法相比,分别提升了3.5%,7.1%;1.4%,6.1%。实验数据说明本研究方法对于芽叶采摘点的准确识别与定位具有一定的借鉴意义。
关键词
图像处理
茶树芽叶
采摘点
深度学习
Keywords
image processing
tea bud
picking point
deep learning
分类号
TP751.1 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于改进YOLOv4算法的茶树芽叶采摘点识别及定位方法
徐凤如
张昆
明
张武
王瑞卿
汪涛
万盛明
刘波
饶元
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
2022
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部