Multimodal cancer synergistic therapy exhibited remarkable advantages over monotherapy in producing an improved therapeutic efficacy. In this work, Janus-type γ-Fe2 O3/SiO2 nanoparticles(JFSNs) are conjugated with gl...Multimodal cancer synergistic therapy exhibited remarkable advantages over monotherapy in producing an improved therapeutic efficacy. In this work, Janus-type γ-Fe2 O3/SiO2 nanoparticles(JFSNs) are conjugated with glucose oxidase(GOx) for synergistic cancer starvation/chemodynamic therapy. The γ-Fe2O3 hemisphere of JFSNs can perform photoacoustic/T2 magnetic resonance dual-modal imaging of tumors.GOx on the surface of JFSNs catalyzes the decomposition of glucose and produces H2O2 for cancer starvation therapy. Subsequently, the γ-Fe2O3 hemisphere catalyzes the disproportionation of H2O2 to generate highly reactive hydroxyl radicals in an acidic tumor microenvironment. The close distance between GOx and JFSNs ensures adequate contact between the γ-Fe2O3 hemisphere and its substrate H2O2, thus enhancing the catalytic efficiency. This synergy of glucose depletion, biotoxic H2O2 and hydroxyl radicals significantly suppresses 4 T1 mammary tumor growth with minimal adverse effects.展开更多
Synergistic therapy combines multiple therapeutic approaches in one shot,thus could significantly amplify the therapeutic effects.However,how to design the desirable combination to maximize the synergistic effect is s...Synergistic therapy combines multiple therapeutic approaches in one shot,thus could significantly amplify the therapeutic effects.However,how to design the desirable combination to maximize the synergistic effect is still a big challenge in cancer management.Herein,a nanoagent composed of glucose oxidase(GOx)and upconversion nanoparticles(UCNPs)were constructed for programmable starving-photodynamic synergistic cancer therapy through cascade glucose oxidation and hydrogen peroxide photolysis.In this nanoagent,GOx modulated the tumor glucose metabolism and consumed the β-D-glucose to produce H2O2.The glucose depletion induced"starvation"in cancer cells and caused cell death.Afterwards,the generated H2O2 was photolyzed by the invisible ultraviolet emission of UCNPs under near-infrared light excitation at 980 nm.The toxic hydroxyl radicals produced by photolysis further induced cancer cell death.Both in vitro and in vivo experiments confirmed that this starving-photodynamic synergistic therapy significantly outran any single therapy.This study paves an avenue to design programmable starving-photodynamic synergistic therapy for cancer management.展开更多
基金This work was supported by the National Key Research and Development Program of China(2018YFA0704003)the Basic Research Program of Shenzhen(JCYJ20180305163452667,JCYJ20180507182413022,and JCYJ20170412111100742)+3 种基金the National Natural Science Foundation of China(81903564,31771036,51703132,and 21874119)the Guangdong Provincial Natural Science Foundation of Major Basic Research and Cultivation Project(2018B030308003)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(161032)We thank Instrumental Analysis Center of Shenzhen University(Lihu Campus).
文摘Multimodal cancer synergistic therapy exhibited remarkable advantages over monotherapy in producing an improved therapeutic efficacy. In this work, Janus-type γ-Fe2 O3/SiO2 nanoparticles(JFSNs) are conjugated with glucose oxidase(GOx) for synergistic cancer starvation/chemodynamic therapy. The γ-Fe2O3 hemisphere of JFSNs can perform photoacoustic/T2 magnetic resonance dual-modal imaging of tumors.GOx on the surface of JFSNs catalyzes the decomposition of glucose and produces H2O2 for cancer starvation therapy. Subsequently, the γ-Fe2O3 hemisphere catalyzes the disproportionation of H2O2 to generate highly reactive hydroxyl radicals in an acidic tumor microenvironment. The close distance between GOx and JFSNs ensures adequate contact between the γ-Fe2O3 hemisphere and its substrate H2O2, thus enhancing the catalytic efficiency. This synergy of glucose depletion, biotoxic H2O2 and hydroxyl radicals significantly suppresses 4 T1 mammary tumor growth with minimal adverse effects.
基金financially supported by the National Natural Science Foundation of China (21807073, 31771036 and 51703132)the Basic Research Program of Shenzhen (JCYJ20170818144745087, JCYJ20180507182413022 and JCYJ20170412111100742)+2 种基金Guangdong Province Natural Science Foundation of Major Basic Research and Cultivation Project (2018B030308003)Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (161032)China Postdoctoral Science Foundation (2018M630987 and 2019T120752)
文摘Synergistic therapy combines multiple therapeutic approaches in one shot,thus could significantly amplify the therapeutic effects.However,how to design the desirable combination to maximize the synergistic effect is still a big challenge in cancer management.Herein,a nanoagent composed of glucose oxidase(GOx)and upconversion nanoparticles(UCNPs)were constructed for programmable starving-photodynamic synergistic cancer therapy through cascade glucose oxidation and hydrogen peroxide photolysis.In this nanoagent,GOx modulated the tumor glucose metabolism and consumed the β-D-glucose to produce H2O2.The glucose depletion induced"starvation"in cancer cells and caused cell death.Afterwards,the generated H2O2 was photolyzed by the invisible ultraviolet emission of UCNPs under near-infrared light excitation at 980 nm.The toxic hydroxyl radicals produced by photolysis further induced cancer cell death.Both in vitro and in vivo experiments confirmed that this starving-photodynamic synergistic therapy significantly outran any single therapy.This study paves an avenue to design programmable starving-photodynamic synergistic therapy for cancer management.