期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
免疫细胞浸润在非小细胞肺癌诊断与预后中的应用
被引量:
7
1
作者
万辉辉
刘振浩
+4 位作者
澹小秀
王广志
徐勇
谢鹭
林勇
《生物工程学报》
CAS
CSCD
北大核心
2020年第4期740-749,共10页
免疫细胞浸润对癌症的诊断与预后有着重要意义。文中收集TCGA数据库已收录的非小细胞肺癌肿瘤与正常组织基因表达数据,利用CIBERSORT工具得到22种免疫细胞占比来评估免疫细胞浸润情况。以22种免疫细胞占比为特征,用机器学习方法构建了...
免疫细胞浸润对癌症的诊断与预后有着重要意义。文中收集TCGA数据库已收录的非小细胞肺癌肿瘤与正常组织基因表达数据,利用CIBERSORT工具得到22种免疫细胞占比来评估免疫细胞浸润情况。以22种免疫细胞占比为特征,用机器学习方法构建了非小细胞肺癌肿瘤与正常组织的分类模型,其中随机森林方法构建的模型分类效果AUC=0.987、敏感性0.98及特异性0.84。并且用随机森林方法构建的肺腺癌和肺鳞癌肿瘤组织分类模型效果AUC=0.827、敏感性0.75及特异性0.77。用LASSO回归筛选22种免疫细胞特征,保留8种强相关特征组成的免疫细胞评分结合临床特征构建了非小细胞肺癌预后模型。经评估及验证,预后模型C-index=0.71并且3年和5年的校准曲线拟合良好,可以对预后风险度进行准确预测。本研究基于免疫细胞浸润所构建的分类模型与预后模型,旨在对非小细胞肺癌的诊断与预后研究提供新的策略。
展开更多
关键词
非小细胞肺癌
免疫细胞浸润
机器学习
随机森林
分类模型
LASSO回归
预后模型
原文传递
题名
免疫细胞浸润在非小细胞肺癌诊断与预后中的应用
被引量:
7
1
作者
万辉辉
刘振浩
澹小秀
王广志
徐勇
谢鹭
林勇
机构
上海理工大学医疗器械与食品学院
上海生物信息技术研究中心
中南大学湘雅医院
上海海洋大学食品科学与技术学院
出处
《生物工程学报》
CAS
CSCD
北大核心
2020年第4期740-749,共10页
文摘
免疫细胞浸润对癌症的诊断与预后有着重要意义。文中收集TCGA数据库已收录的非小细胞肺癌肿瘤与正常组织基因表达数据,利用CIBERSORT工具得到22种免疫细胞占比来评估免疫细胞浸润情况。以22种免疫细胞占比为特征,用机器学习方法构建了非小细胞肺癌肿瘤与正常组织的分类模型,其中随机森林方法构建的模型分类效果AUC=0.987、敏感性0.98及特异性0.84。并且用随机森林方法构建的肺腺癌和肺鳞癌肿瘤组织分类模型效果AUC=0.827、敏感性0.75及特异性0.77。用LASSO回归筛选22种免疫细胞特征,保留8种强相关特征组成的免疫细胞评分结合临床特征构建了非小细胞肺癌预后模型。经评估及验证,预后模型C-index=0.71并且3年和5年的校准曲线拟合良好,可以对预后风险度进行准确预测。本研究基于免疫细胞浸润所构建的分类模型与预后模型,旨在对非小细胞肺癌的诊断与预后研究提供新的策略。
关键词
非小细胞肺癌
免疫细胞浸润
机器学习
随机森林
分类模型
LASSO回归
预后模型
Keywords
NSCLC
immune cell infiltration
machine learning
random forest
classification model
LASSO regression
prognosis model
分类号
R734.2 [医药卫生—肿瘤]
原文传递
题名
作者
出处
发文年
被引量
操作
1
免疫细胞浸润在非小细胞肺癌诊断与预后中的应用
万辉辉
刘振浩
澹小秀
王广志
徐勇
谢鹭
林勇
《生物工程学报》
CAS
CSCD
北大核心
2020
7
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部