针对传统正则化超分辨率(SR)重建模型中,正则化参数选择过大会使重建结果模糊,导致边缘和纹理等细节丢失,选择过小模型去噪能力又不足的问题,提出一种基于结构张量的双正则化参数的视频超分辨率重建算法。首先,利用局部结构张量对图...针对传统正则化超分辨率(SR)重建模型中,正则化参数选择过大会使重建结果模糊,导致边缘和纹理等细节丢失,选择过小模型去噪能力又不足的问题,提出一种基于结构张量的双正则化参数的视频超分辨率重建算法。首先,利用局部结构张量对图像进行平滑区域和边缘的检测;然后,利用差异曲率对全变分(TV)进行先验信息加权;最后,对平滑区域和边缘采用不同的正则化参数进行超分辨率重建。实验数据显示提出的算法将峰值信噪比(PSNR)提高了0.033~0.11 d B,具有较好的重建效果。实验结果表明:该算法能够有效地提升低分辨率(LR)视频帧重建效果,可应用于低分辨率视频增强、车牌识别和视频监控中感兴趣目标增强等方面。展开更多
文摘针对传统正则化超分辨率(SR)重建模型中,正则化参数选择过大会使重建结果模糊,导致边缘和纹理等细节丢失,选择过小模型去噪能力又不足的问题,提出一种基于结构张量的双正则化参数的视频超分辨率重建算法。首先,利用局部结构张量对图像进行平滑区域和边缘的检测;然后,利用差异曲率对全变分(TV)进行先验信息加权;最后,对平滑区域和边缘采用不同的正则化参数进行超分辨率重建。实验数据显示提出的算法将峰值信噪比(PSNR)提高了0.033~0.11 d B,具有较好的重建效果。实验结果表明:该算法能够有效地提升低分辨率(LR)视频帧重建效果,可应用于低分辨率视频增强、车牌识别和视频监控中感兴趣目标增强等方面。