A field work was conducted at Moshiri in Japan. The work included intensive snow pit work, taking snow grain photos, recording snow and air temperatures, as well as measuring snow water content. By treating the snow a...A field work was conducted at Moshiri in Japan. The work included intensive snow pit work, taking snow grain photos, recording snow and air temperatures, as well as measuring snow water content. By treating the snow as a viscous fluid, it is found that the snow compactive viscosity decreases as the density increases, which is opposite to the relation for dry snow. Based on the measurements of snow grain size, it is shown that, similar to the watersaturated snow, the frequency distributions of grain size at different times almost have the same shape. This reveals that the waterunsaturated melting snow holds the same graincoarsening behavior as the watersaturated snow does. It is also shown that the waterunsaturated melting snow coarsens much more slowly than the watersaturated snow. The C value, which is the viscosity when the snow density is zero, is related to the mean grain size and found to decrease with increasing grain size. The decreasing rate of C value increases with decreasing graincoarsening rate.展开更多
The variation of the δ18O in precipitation and the relationship with precipitation amount at Kyangjin Base House and Yala Glacier Camp in Langtang Valley, Nepal Himalayas were analyzed. The variations of the δ18O wi...The variation of the δ18O in precipitation and the relationship with precipitation amount at Kyangjin Base House and Yala Glacier Camp in Langtang Valley, Nepal Himalayas were analyzed. The variations of the δ18O with precipitation had great scatter, and the correlations between the δ18O and precipitation changed with time on the synoptic scale. On the seasonal scale, there was marked amount effect at Kyangjin Base House. However, the δ18O-precipitation gradient was smaller than that on the synoptic scale. Because of the maintenance of the basic equilibrium between stable isotopic compositions in atmospheric vapor and precipitation, the evaporation enrichment was light during the rainy season. Therefore, the variation of stable isotopic compositions in precipitation was independent on the sampling intervals. Simulations show that the rainfall in Langtang Valley was not the outcome of the initial condensation of ocean vapor that originated from low latitudes. The stable isotopic compositions in precipitation were greatly depleted due to the strong rainout of the vapor from oceans as the vapor was raised over the Himalayas.展开更多
The temporal and spatial variations of the δ18O in precipitation on the Tibetan Plateau are analyzed. There is no temperature effect in the southern Tibetan Plateau. Amount effect has been observed at Lhasa station. ...The temporal and spatial variations of the δ18O in precipitation on the Tibetan Plateau are analyzed. There is no temperature effect in the southern Tibetan Plateau. Amount effect has been observed at Lhasa station. However, the seasonal variations of the δ18O in precipitation are different from that of precipitation intensity, showing that the precipitation intensity is not a main controlling factor on the stable isotopic compositions in precipitation in the southern Tibetan Plateau. There is notable temperature effect in the middle and northern Tibetan Plateau. The seasonal variations of the δ18O in precipitation are almost consistent with those of air temperature there, indicating that temperature is a main factor controlling the stable isotopic variations in precipitation. A meridional cross-section shows that a notable depletion of the stable isotopic ratio in precipitation takes place in the Himalayas due to very strong rainout of vapor as it rises over the Himalayas, then the δ18O remains basically unchanged although a big temperature fluctuation appears from Tingri to Amdo, and the δ18O in precipitation increases rather than decreases from Tanggula to the northern Tibetan Plateau. Such a spatial distribution is related to the replenishment of vapor with the relatively heavy stable isotopic compositions originated from the inner Plateau.展开更多
Successive snow pits were dug intensively in a melting snowcover. Water was successfully separated from snow grains in the field for the first time. By measuring δ18O values of water and snow grain samples as well as...Successive snow pits were dug intensively in a melting snowcover. Water was successfully separated from snow grains in the field for the first time. By measuring δ18O values of water and snow grain samples as well as comparing isotopic profiles, it is found that meltwater percolating down in snow develops quick and clear isotopic fractionation with snow grains, but exerts no clear impact on the δ18O profile of the snowcover through which the meltwater percolates.展开更多
基金This work was supported by the Ministry of Education,Science,Sports and Culture of Japanthe Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China.
文摘A field work was conducted at Moshiri in Japan. The work included intensive snow pit work, taking snow grain photos, recording snow and air temperatures, as well as measuring snow water content. By treating the snow as a viscous fluid, it is found that the snow compactive viscosity decreases as the density increases, which is opposite to the relation for dry snow. Based on the measurements of snow grain size, it is shown that, similar to the watersaturated snow, the frequency distributions of grain size at different times almost have the same shape. This reveals that the waterunsaturated melting snow holds the same graincoarsening behavior as the watersaturated snow does. It is also shown that the waterunsaturated melting snow coarsens much more slowly than the watersaturated snow. The C value, which is the viscosity when the snow density is zero, is related to the mean grain size and found to decrease with increasing grain size. The decreasing rate of C value increases with decreasing graincoarsening rate.
基金the National Key Research Project (G1998040802), the CAS Knowledge Innovation Program (XZ-301), LICCRE Program (BX2001-3) and the CAREERI foundation (TZ2000-02).
文摘The variation of the δ18O in precipitation and the relationship with precipitation amount at Kyangjin Base House and Yala Glacier Camp in Langtang Valley, Nepal Himalayas were analyzed. The variations of the δ18O with precipitation had great scatter, and the correlations between the δ18O and precipitation changed with time on the synoptic scale. On the seasonal scale, there was marked amount effect at Kyangjin Base House. However, the δ18O-precipitation gradient was smaller than that on the synoptic scale. Because of the maintenance of the basic equilibrium between stable isotopic compositions in atmospheric vapor and precipitation, the evaporation enrichment was light during the rainy season. Therefore, the variation of stable isotopic compositions in precipitation was independent on the sampling intervals. Simulations show that the rainfall in Langtang Valley was not the outcome of the initial condensation of ocean vapor that originated from low latitudes. The stable isotopic compositions in precipitation were greatly depleted due to the strong rainout of the vapor from oceans as the vapor was raised over the Himalayas.
基金This work is supported the CAS's Key Project for Basic Research on the Tibetan Plateau (Grant No. KZ951-A1-204-02) the Science Foundation of Tianshan Glaciological Station (Grant No. TZ2000-02).
文摘The temporal and spatial variations of the δ18O in precipitation on the Tibetan Plateau are analyzed. There is no temperature effect in the southern Tibetan Plateau. Amount effect has been observed at Lhasa station. However, the seasonal variations of the δ18O in precipitation are different from that of precipitation intensity, showing that the precipitation intensity is not a main controlling factor on the stable isotopic compositions in precipitation in the southern Tibetan Plateau. There is notable temperature effect in the middle and northern Tibetan Plateau. The seasonal variations of the δ18O in precipitation are almost consistent with those of air temperature there, indicating that temperature is a main factor controlling the stable isotopic variations in precipitation. A meridional cross-section shows that a notable depletion of the stable isotopic ratio in precipitation takes place in the Himalayas due to very strong rainout of vapor as it rises over the Himalayas, then the δ18O remains basically unchanged although a big temperature fluctuation appears from Tingri to Amdo, and the δ18O in precipitation increases rather than decreases from Tanggula to the northern Tibetan Plateau. Such a spatial distribution is related to the replenishment of vapor with the relatively heavy stable isotopic compositions originated from the inner Plateau.
基金This work was supported by the Ministry of Education, Science, Sports and Culture of Japan the Research Foundation of Hunan Normal University, China.
文摘Successive snow pits were dug intensively in a melting snowcover. Water was successfully separated from snow grains in the field for the first time. By measuring δ18O values of water and snow grain samples as well as comparing isotopic profiles, it is found that meltwater percolating down in snow develops quick and clear isotopic fractionation with snow grains, but exerts no clear impact on the δ18O profile of the snowcover through which the meltwater percolates.