期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于方向特征显著性计算的MRI脑图像肿瘤检测
1
作者 蹇木伟 王瑞红 +2 位作者 举雅琨 朱呈瞻 董军宇 《南京信息工程大学学报(自然科学版)》 CAS 2019年第6期722-726,共5页
本文提出了一种利用方向性特征进行显著性建模的MRI脑图像肿瘤自动检测算法.该模型首先将MRI脑图像进行预处理,去除掉图像中头骨区域的干扰;然后使用基于方向特征的显著性检测增加病变区域的对比度,实现更准确地提取肿瘤图像区域.本文... 本文提出了一种利用方向性特征进行显著性建模的MRI脑图像肿瘤自动检测算法.该模型首先将MRI脑图像进行预处理,去除掉图像中头骨区域的干扰;然后使用基于方向特征的显著性检测增加病变区域的对比度,实现更准确地提取肿瘤图像区域.本文算法在脑图像数据集上进行了大量的实验,并且与主流的肿瘤自动检测方法进行了对比,证明了本文算法的有效性,并为医生提供可靠的辅助诊断和临床参考. 展开更多
关键词 肿瘤检测 方向特征 显著性计算 显著性检测
下载PDF
MASR-PSN:低分光度立体图像的高分法向重建深度学习模型
2
作者 举雅琨 蹇木伟 +3 位作者 饶源 张述 高峰 董军宇 《中国图象图形学报》 CSCD 北大核心 2023年第7期2120-2134,共15页
目的光度立体算法是一种单视角下的稠密三维重建方法,其利用相同视角下来自不同光照方向的一系列图像恢复像素级的表面法向。拍摄光度立体图像所用的高分辨率线性响应相机的成本十分昂贵且难以获取,很难通过传感器直接获取超高分辨率图... 目的光度立体算法是一种单视角下的稠密三维重建方法,其利用相同视角下来自不同光照方向的一系列图像恢复像素级的表面法向。拍摄光度立体图像所用的高分辨率线性响应相机的成本十分昂贵且难以获取,很难通过传感器直接获取超高分辨率图像来恢复高分辨率表面法向。因此,提出一种基于深度神经网络的光度立体超分算法,以从低分光度立体图像中恢复出准确的高分表面法向。方法首先,对原始的低分光度立体图像进行归一化预处理操作,以消除剧烈变化的表面反射率影响,并消减过饱和镜面反射的影响。随后,提出多层聚合超分光度立体网络(multi-level aggregation super resolution photometric stereo network,MASR-PSN)。MASR-PSN包含一个新颖的深浅层融合的最大池化聚合框架、权值共享的特征回归器、并行设计的不同尺寸卷积核的并行回归器结构,能够在保留多尺度信息的同时,增强特征表示,防止模式坍塌学习到某一固定尺度相关的非重要特征,以及防止3×3卷积核带来空间域上的过度平滑。结果广泛的消融实验证明了提出的深浅层聚合层和并行权值共享回归器的有效性,能明显减少生成表面法向的平均角度误差(mean angular error,MAE)。本文方法仅需其他方法一半分辨率的光度立体图像,而能准确地恢复出复杂表面的结构。DiLiGenT benchmark数据集的定量实验和Light Stage Data Gallery数据集、Gourd数据集的定性实验显示,MASR-PSN在预测表面法向精确度方面有明显提升。在DiLiGenT benchmark数据集中,本文方法在仅使用其他方法一半分辨率的光度立体图像的情况下,以96幅图像为输入时,取得7.31°的平均角度误差,比最佳方法提升0.08°,以10幅图像为输入时,取得9.00°的平均角度误差,比最佳方法提升0.43°。结论提出的MASR-PSN方法提升了光度立体任务表面法向重建的准确性,在低分辨率的输入图像下,依然可以恢复出细节清晰的超分辨率表面法向。 展开更多
关键词 三维重建 光度立体 表面法向恢复 深度学习 超分辨率
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部