期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于隐马尔可夫模型的学习者在线自我调节学习过程挖掘——时间动力学视域下的分析 被引量:3
1
作者 乔丽方 赵蔚 +1 位作者 段红 徐晓青 《电化教育研究》 CSSCI 北大核心 2022年第10期57-64,共8页
自我调节学习是随着时间推移变化的动态过程,对学习者在线学习有重要影响。其中,时间性是理解学生如何调节学习的关键因素。目前,在线学习中学习者自我调节学习过程如何激活,如何随时间动态变化的研究较少。因此,文章提出自我调节学习... 自我调节学习是随着时间推移变化的动态过程,对学习者在线学习有重要影响。其中,时间性是理解学生如何调节学习的关键因素。目前,在线学习中学习者自我调节学习过程如何激活,如何随时间动态变化的研究较少。因此,文章提出自我调节学习的时间动力学框架,并基于不同时间尺度,使用隐马尔可夫模型识别不同类型学习者自我调节过程差异,从变化类型、时间特征和时间模式三个维度分析学习者自我调节过程的动态变化与差异形成原因。结果表明:(1)自我调节学习的时间动力学框架能有效识别学习者自我调节的动态过程和差异;(2)表现好的学习者自我调节过程阶段性交互作用较强,调节效果较好,时间模式适应性调整特征突出,特别是计划有效性、监控作用方式和评价后的调节倾向方面。研究拓展了隐马尔可夫模型在自我调节学习中的应用,对自我调节学习的时间动力学研究发展具有理论和方法意义,为学习者自我调节过程干预提供支持。 展开更多
关键词 自我调节学习 时间动力学 隐马尔可夫模型 潜在剖面分析 学习管理系统
下载PDF
过程挖掘赋能教育数据分析:三种挖掘算法的应用探析 被引量:1
2
作者 徐晓青 赵蔚 +2 位作者 姜强 刘红霞 乔丽方 《远程教育杂志》 CSSCI 北大核心 2022年第3期45-55,共11页
教育数据爆发式增长为全面理解学习奠定了基础,同时也给教育数据挖掘带来了挑战。复现学习过程是理解学习的重要一环。虽然,当前的教育研究已经广泛应用学习分析技术,但在呈现复杂学习过程方面仍然存在不足。过程挖掘算法强调对日志文... 教育数据爆发式增长为全面理解学习奠定了基础,同时也给教育数据挖掘带来了挑战。复现学习过程是理解学习的重要一环。虽然,当前的教育研究已经广泛应用学习分析技术,但在呈现复杂学习过程方面仍然存在不足。过程挖掘算法强调对日志文件中时间戳数据的分析,相比于传统统计方法更加智能。研究选择教育领域最常见的三种过程挖掘算法:模糊矿工、启发式矿工、感应矿工,通过对比三种算法的特征,分析其对教育研究的应用潜力和实践价值。首先,文献综述三种算法的应用现状;其次,从三种算法的计算原理角度解读它们在教育领域的应用实践;最后,以课程平台时间戳数据为源数据,在自我调节学习理论支持下,对比三种算法的过程挖掘结果。即从理论、原理、实践三方面对三个过程挖掘算法进行探析,总结过程挖掘技术在教育领域中的应用前景和实践价值。研究依据结论提出三种算法在教育领域中的应用启示,为过程挖掘智能技术助力教育研究,提供相关经验和参考。 展开更多
关键词 过程挖掘 学习分析 教育数据挖掘 模糊矿工 启发式矿工 感应矿工
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部