In order to help reactive ad hoc routing protocols select better-performance routes, a novel metric named geographic route length (GRL) is proposed. The relationship between GRL metric and routing performance is ana...In order to help reactive ad hoc routing protocols select better-performance routes, a novel metric named geographic route length (GRL) is proposed. The relationship between GRL metric and routing performance is analyzed in detail. Combined with hop metric, GRL is applied into the original ad hoe on-demand distance vector (AODV) to demonstrate its effectiveness. Simulation experiments have shown that GRL can effectively reduce packet delay and route discovery frequency, thus can improve reactive ad hoc routing performance.展开更多
文摘In order to help reactive ad hoc routing protocols select better-performance routes, a novel metric named geographic route length (GRL) is proposed. The relationship between GRL metric and routing performance is analyzed in detail. Combined with hop metric, GRL is applied into the original ad hoe on-demand distance vector (AODV) to demonstrate its effectiveness. Simulation experiments have shown that GRL can effectively reduce packet delay and route discovery frequency, thus can improve reactive ad hoc routing performance.