期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于层次结构与多模块的海洋生物分类算法
1
作者 于升正 程远志 《计算机技术与发展》 2024年第11期36-42,共7页
传统分类方法在海洋生物图像分类任务上视各类别相互独立,而生物间存在着明确的相互关系,常规方法忽略了其生物学关系。为了使分类网络充分利用数据间的关系,该文提出层次化贝叶斯信息准则(HBIC)探索分层结构,并结合预定义层次结构联合... 传统分类方法在海洋生物图像分类任务上视各类别相互独立,而生物间存在着明确的相互关系,常规方法忽略了其生物学关系。为了使分类网络充分利用数据间的关系,该文提出层次化贝叶斯信息准则(HBIC)探索分层结构,并结合预定义层次结构联合学习,共同辅助神经网络分类。此外,为更高效准确地提取数据全尺寸特征,设计了一种EAConv模块,并引入相对注意力机制,基于多模块与层次结构,进一步建立端到端联合优化的分层学习方法框架(EAHNet)。所有实验基于私有的南麂列岛潮间带大型海洋生物数据集进行,根据层次结构设计的常规卷积神经网络能够将分类准确率提高到86.16%,完整网络能够使准确率达到96.17%,同时能够保证准确率与参数量等网络性能的均衡。结果表明,所提出的多种层次结构辅助、卷积与注意力机制特异性结合的特征提取方法,有效加强了网络对于海洋生物关系信息与特征的捕获能力,从而在整体上取得非常有竞争力的结果。 展开更多
关键词 层次结构 层次化贝叶斯信息准则 联合优化 多模块 海洋生物图像
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部