In this paper, an algorithm based on a shifted inverse power iteration for computing generalized eigenvalues with corresponding eigenvectors of a large scale sparse symmetric positive definite matrix pencil is present...In this paper, an algorithm based on a shifted inverse power iteration for computing generalized eigenvalues with corresponding eigenvectors of a large scale sparse symmetric positive definite matrix pencil is presented. It converges globally with a cubic asymptotic convergence rate, preserves sparsity of the original matrices and is fully parallelizable. The algebraic multilevel itera-tion method (AMLI) is used to improve the efficiency when symmetric positive definite linear equa-tions need to be solved.展开更多
文摘In this paper, an algorithm based on a shifted inverse power iteration for computing generalized eigenvalues with corresponding eigenvectors of a large scale sparse symmetric positive definite matrix pencil is presented. It converges globally with a cubic asymptotic convergence rate, preserves sparsity of the original matrices and is fully parallelizable. The algebraic multilevel itera-tion method (AMLI) is used to improve the efficiency when symmetric positive definite linear equa-tions need to be solved.