期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合趋势嵌入和粒度增强网络的小样本医学时间序列预测
1
作者
于敬楠
张春霞
+2 位作者
薛新月
薛晓军
牛振东
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2024年第6期948-959,共12页
随着大数据分析和深度学习的迅猛发展,时间序列预测方法被广泛应用于医学、金融、气象和交通等领域,为众多应用任务提供决策支持.针对小样本医学数据特征维度低和现有深度学习方法易于造成过拟合问题,研究小样本医学时间序列预测任务,...
随着大数据分析和深度学习的迅猛发展,时间序列预测方法被广泛应用于医学、金融、气象和交通等领域,为众多应用任务提供决策支持.针对小样本医学数据特征维度低和现有深度学习方法易于造成过拟合问题,研究小样本医学时间序列预测任务,提出融合趋势嵌入和粒度增强网络的预测方法.首先在卷积神经网络的框架下,粒度增强网络分别从时间维度和特征维度将医学时间序列数据提升为三维张量;然后以医学时间序列样本的一阶差分作为方向向量,基于方向导数生成趋势嵌入表征;再构建静态空间邻接矩阵和动态时间邻接矩阵,并通过时空图卷积网络学习时空嵌入表征;最后将构建的时空嵌入、预测嵌入和趋势嵌入整合到基于图卷积网络、门控循环单元和残差网络的网络架构之中,实现医学时间序列预测.在Cancer,ILI,Baries和COVID-19这4个数据集上的实验结果表明,与预测结果最佳的基线模型T-GCN相比,所提方法在每个数据集的MAE,MAPE和RMSE这3个评价指标上分别降低34.0607,0.0107,70.6728;11.1808,0.0950,20.7285;0.3546,0.1127,0.4553和449.2437,0.0144,1174.7273,其性能优于基线方法,验证了该方法的可行性及有效性.
展开更多
关键词
时间序列预测
趋势嵌入
粒度增强网络
时空图卷积网络
下载PDF
职称材料
题名
融合趋势嵌入和粒度增强网络的小样本医学时间序列预测
1
作者
于敬楠
张春霞
薛新月
薛晓军
牛振东
机构
北京理工大学计算机学院
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2024年第6期948-959,共12页
基金
国家自然科学基金(62072039)。
文摘
随着大数据分析和深度学习的迅猛发展,时间序列预测方法被广泛应用于医学、金融、气象和交通等领域,为众多应用任务提供决策支持.针对小样本医学数据特征维度低和现有深度学习方法易于造成过拟合问题,研究小样本医学时间序列预测任务,提出融合趋势嵌入和粒度增强网络的预测方法.首先在卷积神经网络的框架下,粒度增强网络分别从时间维度和特征维度将医学时间序列数据提升为三维张量;然后以医学时间序列样本的一阶差分作为方向向量,基于方向导数生成趋势嵌入表征;再构建静态空间邻接矩阵和动态时间邻接矩阵,并通过时空图卷积网络学习时空嵌入表征;最后将构建的时空嵌入、预测嵌入和趋势嵌入整合到基于图卷积网络、门控循环单元和残差网络的网络架构之中,实现医学时间序列预测.在Cancer,ILI,Baries和COVID-19这4个数据集上的实验结果表明,与预测结果最佳的基线模型T-GCN相比,所提方法在每个数据集的MAE,MAPE和RMSE这3个评价指标上分别降低34.0607,0.0107,70.6728;11.1808,0.0950,20.7285;0.3546,0.1127,0.4553和449.2437,0.0144,1174.7273,其性能优于基线方法,验证了该方法的可行性及有效性.
关键词
时间序列预测
趋势嵌入
粒度增强网络
时空图卷积网络
Keywords
time series forecasting
trend embedding
granularity enhancement network
spatiotemporal graph convolutional network
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合趋势嵌入和粒度增强网络的小样本医学时间序列预测
于敬楠
张春霞
薛新月
薛晓军
牛振东
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部