期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
实值优化问题的非对称负相关搜索算法
1
作者
于润龙
赵洪科
+4 位作者
汪中
叶雨扬
张培宁
刘淇
陈恩红
《计算机研究与发展》
EI
CSCD
北大核心
2019年第8期1746-1757,共12页
现实世界中的许多应用与实值优化问题紧密相关.为了求解复杂的实值优化问题,一些研究工作提出不同的元启发式假设并设计相应的搜索策略.在搜索解空间过程中,如何平衡探索解空间新区域(多样化)与实现优质解利用(集约化)之间的关系,是提...
现实世界中的许多应用与实值优化问题紧密相关.为了求解复杂的实值优化问题,一些研究工作提出不同的元启发式假设并设计相应的搜索策略.在搜索解空间过程中,如何平衡探索解空间新区域(多样化)与实现优质解利用(集约化)之间的关系,是提高元启发式搜索算法性能的关键因素之一.特别地,负相关搜索(negatively correlated search, NCS)通过在搜索进程中引入负相关的搜索趋势,促进了解的多样性,有效改进了并行爬山算法的搜索性能.负相关搜索将每一个搜索进程的搜索行为建模为概率分布,在此基础上,根据搜索进程的搜索范围的相对大小,将搜索行为进一步划分为全局搜索行为和局部搜索行为.然后提出一种新的元启发式搜索算法,即非对称负相关搜索(negatively correlated search with asymmetry, NSA),它假设具有全局搜索行为的搜索进程应尽可能远离具有局部搜索行为的搜索进程.得益于搜索进程之间非对称的负相关的搜索趋势,提出的算法相比负相关搜索拥有更优的搜索效率.实验结果表明:相比成熟的搜索方法,非对称负相关搜索在20个多模态实值优化问题上取得了最佳的整体性能.
展开更多
关键词
复杂实值优化问题
探索与利用
并行爬山算法
负相关搜索
搜索行为
下载PDF
职称材料
多重对级贝叶斯个性化排序算法
被引量:
3
2
作者
程明月
刘淇
+3 位作者
李徵
于润龙
高维博
陈恩红
《南京信息工程大学学报(自然科学版)》
CAS
2019年第3期302-308,共7页
为解决隐式反馈推荐问题,贝叶斯个性化排序(BPR)模型已经成为最具有代表性的对级(Pairwise)排序算法之一.在BPR模型中,存在一个严格的偏序假设:相较于未标记的物品而言,用户更喜欢已经有过标记行为的物品.本文提出了一种多重对级贝叶斯...
为解决隐式反馈推荐问题,贝叶斯个性化排序(BPR)模型已经成为最具有代表性的对级(Pairwise)排序算法之一.在BPR模型中,存在一个严格的偏序假设:相较于未标记的物品而言,用户更喜欢已经有过标记行为的物品.本文提出了一种多重对级贝叶斯个性化排序(MBPR)推荐算法来进一步提升用户对物品的偏好预测能力.首先,基于BPR模型的排序关系设计了一种改进的多重对级偏序假设.具体地,对于每一用户,本文提出将未标记的反馈集细分为潜在的负反馈集和不确定性反馈集,并基于改进的对级偏序假设,提出了一种新的多重对级排序的优化目标来学习用户与物品之间的相关性.为实现MBPR模型的采样任务,本文设计了一种自适应采样策略来为模型更新动态地选取训练样本.最后,在公开数据集上开展了仿真推荐实验,并与基线算法对比.实验结果表明,MBPR算法能够取得更好的推荐效果.
展开更多
关键词
推荐系统
隐式反馈
对级排序
协同过滤
下载PDF
职称材料
题名
实值优化问题的非对称负相关搜索算法
1
作者
于润龙
赵洪科
汪中
叶雨扬
张培宁
刘淇
陈恩红
机构
大数据分析与应用安徽省重点实验室(中国科学技术大学)
天津大学管理与经济学部
出处
《计算机研究与发展》
EI
CSCD
北大核心
2019年第8期1746-1757,共12页
基金
国家自然科学基金项目(61672483,U1605251)
中国科学院青年创新促进会优秀会员专项(2014299)
安徽省科技创新战略与软科学研究专项(201806a02020055)~~
文摘
现实世界中的许多应用与实值优化问题紧密相关.为了求解复杂的实值优化问题,一些研究工作提出不同的元启发式假设并设计相应的搜索策略.在搜索解空间过程中,如何平衡探索解空间新区域(多样化)与实现优质解利用(集约化)之间的关系,是提高元启发式搜索算法性能的关键因素之一.特别地,负相关搜索(negatively correlated search, NCS)通过在搜索进程中引入负相关的搜索趋势,促进了解的多样性,有效改进了并行爬山算法的搜索性能.负相关搜索将每一个搜索进程的搜索行为建模为概率分布,在此基础上,根据搜索进程的搜索范围的相对大小,将搜索行为进一步划分为全局搜索行为和局部搜索行为.然后提出一种新的元启发式搜索算法,即非对称负相关搜索(negatively correlated search with asymmetry, NSA),它假设具有全局搜索行为的搜索进程应尽可能远离具有局部搜索行为的搜索进程.得益于搜索进程之间非对称的负相关的搜索趋势,提出的算法相比负相关搜索拥有更优的搜索效率.实验结果表明:相比成熟的搜索方法,非对称负相关搜索在20个多模态实值优化问题上取得了最佳的整体性能.
关键词
复杂实值优化问题
探索与利用
并行爬山算法
负相关搜索
搜索行为
Keywords
complex real-parameter optimization
exploration and exploitation
parallel hill climbing
negatively correlated search (NCS)
search behavior
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
多重对级贝叶斯个性化排序算法
被引量:
3
2
作者
程明月
刘淇
李徵
于润龙
高维博
陈恩红
机构
中国科学技术大学大数据分析与应用安徽省重点实验室
出处
《南京信息工程大学学报(自然科学版)》
CAS
2019年第3期302-308,共7页
基金
国家自然科学基金(61672483)
文摘
为解决隐式反馈推荐问题,贝叶斯个性化排序(BPR)模型已经成为最具有代表性的对级(Pairwise)排序算法之一.在BPR模型中,存在一个严格的偏序假设:相较于未标记的物品而言,用户更喜欢已经有过标记行为的物品.本文提出了一种多重对级贝叶斯个性化排序(MBPR)推荐算法来进一步提升用户对物品的偏好预测能力.首先,基于BPR模型的排序关系设计了一种改进的多重对级偏序假设.具体地,对于每一用户,本文提出将未标记的反馈集细分为潜在的负反馈集和不确定性反馈集,并基于改进的对级偏序假设,提出了一种新的多重对级排序的优化目标来学习用户与物品之间的相关性.为实现MBPR模型的采样任务,本文设计了一种自适应采样策略来为模型更新动态地选取训练样本.最后,在公开数据集上开展了仿真推荐实验,并与基线算法对比.实验结果表明,MBPR算法能够取得更好的推荐效果.
关键词
推荐系统
隐式反馈
对级排序
协同过滤
Keywords
recommender systems
implicit feedback
pairwise ranking
collaborative filtering
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
实值优化问题的非对称负相关搜索算法
于润龙
赵洪科
汪中
叶雨扬
张培宁
刘淇
陈恩红
《计算机研究与发展》
EI
CSCD
北大核心
2019
0
下载PDF
职称材料
2
多重对级贝叶斯个性化排序算法
程明月
刘淇
李徵
于润龙
高维博
陈恩红
《南京信息工程大学学报(自然科学版)》
CAS
2019
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部